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Abstract. We present an other proof of the well known insolubility of Fermat’s

equation x3 + y3 = z3 in Eisenstein’s ring Z[ω] when ω3 = 1, ω ̸= 1, x y z ̸= 0.

Assuming the existence of a nontrivial solution (a1 + b1 ω, a2 + b2 ω, a3 + b3 ω) the

proof exploits the algebraic properties, (degree, kind of roots, coefficients’ relations),

of the polynomial f(x) = (a1 + b1 x)3 + (a2 + b2 x)3 − (a3 + b3 x)3. In the course

of action, the well known algebraic structure of the group of rational points of the

elliptic curve y2 = x3 + 16 provides the final result.
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Abstrak. Kami menyajikan sebuah bukti lain dari insolubilitas terkenal dari per-

samaan Fermat x3+y3 = z3 pada ring Eisenstein Z[ω] dengan ω3 = 1, ω ̸= 1, x y z ̸=
0. Akibat pengasumsian keberadaan solusi nontrivial (a1+b1 ω, a2+b2 ω, a3+b3 ω),

diberikan bukti dengan memanfaatkan sifat-sifat aljabar (derajat, jenis akar, dan

relasi koefisien) dari polinom f(x) = (a1+b1 x)3+(a2+b2 x)3−(a3+b3 x)3. Dalam

hal penerapan lebih lanjut, struktur aljabar terkenal dari grup titik-titik rasional

kurva eliptik y2 = x3 + 16 memberikan hasil akhir.

Kata kunci: Persamaan kubik Fermat, ring Eisenstein, kurva-kurva eliptik.

1. Introduction

When ω3 = 1, ω ̸= 1 it is well known Ireland and Rosen [2, p. 248], Ribenboim
[5, p. 43] that the Fermat type cubic equation

x3 + y3 = z3, (1)
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has only trivial (x y z = 0) solutions in Z[ω]. The proof is based on the algebraic
properties of Z[ω] as a unique factorization domain. It is a classical approach within
the frame of Algebraic Number Theory.

In this note we present an other method for proving the insolubility of (1) in
Z[ω] when x y z ̸= 0. Our approach exploits the algebraic properties, (degree, kind
of roots, coefficients’ relations), of the polynomial

f(x) = (a1 + b1 x)
3 + (a2 + b2 x)

3 − (a3 + b3 x)
3 =

= [p1(x)]
3 + [p2(x)]

3 − [p3(x)]
3 ∈ Z[x], (2)

when
(x0, y0, z0) = (a1 + b1 ω, a2 + b2 ω, a3 + b3 ω), (x0 y0 z0 ̸= 0), (3)

is a hypothetical nontrivial solution of (1) in Z[ω]. In the course of action, we show
that the existence of (3), through the properties of (2), implies the existence of a
rational point (X0, Y0), (X0 Y0 ̸= 0), on the elliptic curve

y2 = x3 + 16. (4)

The structure of the group of rational points on (4) is well known Husmöler [1],
Cremona’s Elliptic Curves software package Mwrank [3], Pari/GP software package
[4], Cremona’s Elliptic Curves tables [6]. Equation (4) has rank 0 and torsion
subgroup of order 3. Apart from the point at infinity, (x, y) = (0,±4) are the
only rational points on (4). The latter contradicts the constraint X0 Y0 ̸= 0 thus
rejecting (3) as a solution of (1) in Z[ω].

2. Algebraic Properties of f(x)

Assuming the existence of a nontrivial solution (x0, y0, z0) = (a1 + b1 ω, a2 +
b2 ω, a3 + b3 ω) of (1) in Z[ω], some necessary constraints upon the am’s, bm’s,
m ∈ I = {1, 2, 3} follow. The condition of x0 y0 z0 ̸= 0 implies

|am|+ |bm| ̸= 0, ∀m ∈ I. (5)

If am = 0 or bm = 0 for all m ∈ I, then a substitution of (x0, y0, z0) into (1) implies
either b31 + b32 = b33 or a31 + a32 = a33 respectively. Since the am’s, bm’s are in Z
the latter holds only when at least one of the bm’s or the am’s respectively is zero.
Then at least one of the am + bm ω is zero contradicting (5). Hence,

|a1|+ |a2|+ |a3| ̸= 0 and |b1|+ |b2|+ |b3| ̸= 0. (6)

A substitution of (x0, y0, z0) into (1) clearly implies f(ω) = 0. Since f(x) ∈ Z[x],
f(ω) = f(ω) = 0. It follows that when (1) has a nontrivial solution in Z[ω], f(x)
has two complex roots ω, ω. The existence of a third root depends on the coefficient
t3 = b31 + b32 − b33 of the leading term of f(x). If t3 = 0, then f(x) has only two
roots. The next result answers the questions concerning the degree of f(x) and the
kind of roots f(x) possesses.
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Proposition 2.1. If (1) has a nontrivial solution (x0, y0, z0) in Z[ω], then
i). f(x) has degree 3.

ii). f(x) has nonzero constant term.

iii). The roots of f(x) are −c/d ∈ Q− {0}, ω, ω = ω2.

Proof. i). We have already shown that f(x) has at least degree 2. Let the
coefficient t3 = b31 + b32 − b33 of its leading term be zero. Since bm ∈ Z for all m ∈ I,
there exists b ∈ Z such that (b1, b2, b3) = (0, b, b) or (b, 0, b) or (−b, b, 0) or (b,−b, 0).
All four cases follow along similar lines. We treat in detail only the first one,

(b1, b2, b3) = (0, b, b). (7)

Then a substitution of (x0, y0, z0) = (a1, a2 + b ω, a3 + b ω) into (1) along with the
facts that ω3 = 1, ω2 + ω + 1 = 0 imply,[

a31 + a32 − a33 − 3 b2 (a2 − a3)
]
+ [3 b (a2 − a3) ((a2 + a3)− b)]ω = 0. (8)

The coefficient of ω in (8) has to be zero. Namely, b = 0 or a2 = a3 or b = a2 + a3.
If b = 0, then (7) contradicts (6). Hence, b ̸= 0. Notice that, (5), (7) imply a1 ̸= 0.
If a2 = a3, then (8) implies a1 = 0, a contradiction. Hence, a2 ̸= a3. If b = a2+a3,
then a2 + a3 ̸= 0 (since b ̸= 0). Additionally, a rational point (X0, Y0) with

X0 = 4
a1

a2 − a3
∈ Q− {0} , Y0 = 12

a2 + a3
a2 − a3

∈ Q− {0}, (9)

exists such that

(a2 − a3)
3
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[
X3

0 + 16− Y 2
0

]
= a31 − 2 a32 + 2 a33 + 3 a2 a

2
3 − 3 a22 a3 =

= a31 + a32 − a33 − 3 (a2 + a3)
2 (a2 − a3)

(8)
= 0.

Since a2 ̸= a3, the latter provides the existence of a rational point (X0, Y0) on the
elliptic curve y2 = x3 + 16 with X0 Y0 ̸= 0, a contradiction. As we have already
mentioned in the introduction, (4) has no such rational points. Overall, (8) fails to
hold and t3 ̸= 0. As a result f(x) has degree 3.

ii). The constant term of f(x) is t0 = a31 + a32 − a33. We can show that t0 ̸= 0 by
following exactly the same reasoning as in i).

iii). We already know that ω, ω are roots of f(x). The polynomial x2 + x + 1 =
(x− ω) (x− ω) divides f(x) exactly. Namely,

f(x) = (d x+ c) (x2 + x+ 1),

with c, d ∈ Z− {0} since f(x) ∈ Z[x], d = t3 ̸= 0, c = t0 ̸= 0. 2
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The most important consequence of Proposition 2.1 is a certain relation be-
tween the coefficients of f(x) implied by the existence of the nonzero rational root
−c/d. Let

km =

{
−1 , m = 1, 2,
1 , m = 3.

Proposition 2.2. If (1) has a nontrivial solution (x0, y0, z0) in Z[ω], then λ ∈
Q− {0} and exactly one value of m in I = {1, 2, 3} exist such that, for m ̸= ℓ ̸= j,
m, ℓ, j ∈ I

am = λ (aℓ + km aj) , bm = λ (bℓ + km bj). (10)

Proof. Recalling the notation in (2) and the fact that f(−c/d) = 0 we distinguish
the following cases:

a). pm(−c/d) ̸= 0, ∀m ∈ I. Then am d − bm c ̸= 0, ∀m ∈ I and f(−c/d) = 0
implies (a1 d− b1 c)

3 + (a2 d− b2 c)
3 = (a3 d− b3 c)

3, a contradiction.

b). pm(−c/d) = 0, ∀m ∈ I. Then am d = bm c, ∀m ∈ I. The latter along with
(5) and c, d ∈ Z − {0} imply am ̸= 0, bm ̸= 0, ∀m ∈ I. Since c + dω ̸= 0 and
am = (c/d) bm, x3

0 + y30 = z30 implies b31 + b32 = b33, a contradiction.

c). pm(−c/d) = 0 for exactly two values of m ∈ I. Then f(−c/d) = 0 implies that
pm(−c/d) = 0 for the third value of m ∈ I contradicting (b).

d). pm(−c/d) = 0 for exactly one value of m ∈ I. Then am d = bm c. The latter
along with (5) and c, d ∈ Z− {0} imply am ̸= 0, bm ̸= 0. Let ℓ, j be the other two
elements of I. Then f(−c/d) = 0 implies,

(aℓ d− bℓ c)
3 + km (aj d− bj c)

3 = 0 ⇒ (aℓ d− bℓ c) = −km (aj d− bj c),

or, (aℓ + km aj) d = (bℓ + km bj) c. The substitution d = (bm/am) c into the latter
implies

aℓ + km aj
am

=
bℓ + km bj

bm
= g ∈ Q. (11)

If g = 0, then for the various values of m ∈ I, x3
0 + y30 = z30 along with (11) imply

either x0 = 0 or y0 = 0 or z0 = 0 contradicting (5). Finally g ∈ Q − {0}. Set
λ = 1/g ∈ Q− {0} in (11) and the result follows. 2

We close the investigation of the algebraic properties of f(x) by noting that,
without loss of generality, the exact value of m in (10) of Proposition 2.2 may
assumed to be 1. If m = 2 or 3, then we transform (1) to the equivalent equations
y3+x3 = z3 or (−z)3+ y3 = (−x)3 and denote by (y0, x0, z0) or (−z0, y0,−x0) the
nontrivial solution (a1 + b1 ω, a2 + b2 ω, a3 + b3 ω) of each one in Z[ω] respectively.
Now we can go further ahead and, again without loss of generality, specify the
values of ℓ, j ∈ {2, 3}, ℓ ̸= j in (10). Since a1 = λ (aℓ − aj) = −λ (aj − aℓ),
b1 = λ (bℓ − bj) = −λ (bj − bℓ), we may assume ℓ = 2, j = 3.
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Under the previous developments, (10) provides the following relation be-
tween x0, y0, z0.

Proposition 2.3. If (1) has a nontrivial solution (x0, y0, z0) in Z[ω], then a λ ∈
Q− {0} exists such that

x0 = λ (y0 − z0). (12)

3. Insolubility of x3 + y3 = z3 in Z[ω] when x y z ̸= 0

Now we are ready to proceed with the final steps of the proof of the insolubility
of (1) in Z[ω] when x y z ̸= 0. Note that, when a, b ∈ Z, |a|+ |b| ̸= 0,

1

a+ b ω
=

a+ b ω2

(a+ b ω) (a+ b ω2)
=

(a− b)− b ω

a2 + b2 − a b
. (13)

Proposition 3.1. If (1) has a nontrivial solution (x0, y0, z0) in Z[ω], then the
elliptic curve (4) has a rational point (X0, Y0) with X0 Y0 ̸= 0.

Proof. Let w0 = y0/z0
(13)
∈ Q(ω) =

{
p+ q −1+

√
−3

2 , p, q ∈ Q
}

= Q(
√
−3). (5)

implies w0 ̸= 0. (1) and (5) imply w0 ̸= 1.

x3
0 + y30 = z30

(12)⇒ λ3 (w0 − 1)3 + w3
0 − 1 = 0

⇒ (λ3 + 1)w2
0 + (−2λ3 + 1)w0 + (λ3 + 1) = 0. (14)

λ = −1 in (14) implies w0 = 0, a contradiction. Hence, λ ̸= −1. The discriminant

of (14) is D = −12λ3 − 3. D = 0 implies λ = −1/ 3
√
4, a contradiction since λ is a

rational. Hence, D ̸= 0. The roots of (14) are

w0 =
2λ3 − 1

2 (λ3 + 1)
±

√
D

2 (λ3 + 1)
=

2λ3 − 1

2 (λ3 + 1)
±

√
4λ3 + 1

2 (λ3 + 1)

√
−3. (15)

Since w0 ∈ Q(
√
−3) − {0}, a µ ∈ Q should exist such that, µ =

√
4λ3 + 1. We

have µ ∈ Q− {0} since λ ̸= −1/ 3
√
4. Additionally,

µ =
√

4λ3 + 1 ⇒ (4µ)2 = (4λ)3 + 16.

Hence, the elliptic curve (4) has the rational point (X0, Y0) = (4λ, 4µ). λ, µ ∈
Q− {0} imply that X0 Y0 ̸= 0. 2

The algebraic structure of the group of rational points on (4) as stated in the
introduction along with Proposition 3.1 lead to the final conclusion.

Theorem 3.2. x3 + y3 = z3 is insoluble in Z[ω] when x y z ̸= 0.
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Proof. Let (1) have a nontrivial (x0 y0 z0 ̸= 0) solution in Z[ω]. According to
Proposition 3.1, the elliptic curve (4) has a rational point (X0, Y0) with X0 Y0 ̸= 0.
The latter contradicts the algebraic structure of the group of rational points on (4)
as stated in the introduction namely, the only rational points of (4) are (x, y) =
(0,±4) with x y = 0. 2
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