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Abstract. In this paper we introduce the notions of semiprime subsemimodules

and semiprime k-subsemimodules and present some characterizations about them.

Special attention has been paid, when semimodules are multiplication, to find ex-

tra properties of these semimodules. Moreover we prove a result for semiprime

subsemimodules of quotient semimodules.
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Abstrak. Pada paper ini kami memperkenalkan ide-ide subsemimodul semiprima,

subsemimodul-k semiprima, dan menyajikan beberapa sifat mereka. Perhatian

khusus diberikan, saat semimodul adalah perkalian, untuk menemukan sifat-sifat

tambahan dari semimodul ini. Lebih jauh, kami membuktikan sebuah hasil untuk

subsemimodul semiprima dari semimodul hasil bagi.

Kata kunci: Subsemimodul semiprima, semiprima kuat, semimodul-k, semiring-S,
semimodul-S.

1. Introduction

In the recent years a good deal of researches have been done concerning semir-
ings and semimodules (for example see [1]-[6]). Particularly, there are numerous
applications of semirings and semimodules in various branches of mathematics and
computer sciences (for example see [6]). Also, in the last decade the notion of prime
subsemimodules has been studied by many authors (for example see [3], [6] and [8]).
Having the vast heritage of ring theory available, a number of authors have tried
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to extend and generalize many classical notions and definitions. For example, from
the definition of a prime submodule, they have reached to prime subsemimodule
etc. In this paper we define semiprime subsemimodules and strong semiprime k-
subsemimodules of semimodules and prove some of their properties. In section 2,
we recall some of the known notions and definitions. In sections 3, we give some
basic results about semiprime subsemimodules of semimodules and quotient semi-
modules. Section 4 is devoted to the study of strong semiprime k-subsemimodules,
S-semirings and S-semimodules.

2. Preliminaries

We begin this section with some necessary definitions.

Definition 2.1. (a) A non-empty set R together with two binary operations
(called addition and multiplication and denoted by +, · respectively) is called a
semiring provided that:

(i) (R,+) is a commutative semigroup
(ii) (R, ·) is a semigroup
(iii) There exists 0 ∈ R such that r + 0 = r and r · 0 = 0 · r = 0 for all r ∈ R
(iv) Multiplication distributes over addition both from the left and right.

If R contains the multiplicative identity 1, then R is called a semiring with
identity. A semiring R is commutative if (R, ·) is a commutative semigroup. In this
paper all semirings are commutative with identity.

(b) A non-empty subset I of a semiring R is called an ideal of R if a, b ∈ I
and r ∈ R implies that a+ b ∈ I and ra, ar ∈ I.

(c) An ideal I of a semiring R is called a subtractive ideal (or k-ideal) if
a, a+ b ∈ I implies that b ∈ I. For example {0} is a k-ideal of R.

(d) An ideal I of a semiring R is called a partitioning ideal (or Q-ideal) if
there exists a subset Q of R such that R =

∪
{q + I|q ∈ Q} and if q1, q2 ∈ Q then

(q1 + I)
∩
(q2 + I) ̸= ∅ if and only if q1 = q2.

Definition 2.2. (a) A semimodule M over a semiring R (or an R-semimodule) is
a commutative monoid (M,+) with additive identity 0M , together with a function
R×M −→ M , defined by (r,m) 7→ rm (called scalar multiplication) such that:

(i) r(m+m′) = rm+ rm′

(ii) (r + r′)m = rm+ r′m
(iii) (r · r′)m = r(r′m)
(iv) 1Rm = m
(v) 0Rm = r0M = 0M

for all r, r′ ∈ R and m,m′ ∈ M . Clearly, every semiring is a semimodule over itself.

(b) A subset N of the R-semimodule M is called a subsemimodule of M if
a, b ∈ N and r ∈ R implies that a+ b ∈ N and ra ∈ N .
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(c) Let M be a semimodule over a semiring R. A subtractive subsemimodule
(or k-subsemimodule) N is a subsemimodule of M such that if a, a + b ∈ N , then
b ∈ N . For example {0M} is a k-subsemimodule of M .

(d) A subsemimodule N of a semimodule M over a semiring R is called a
partitioning subsemimodule (or Q(M)-subsemimodule) if there exists a non-empty
subset Q(M) of M such that:

(i) RQ(M) ⊆ Q(M), where RQ(M) = {rq|r ∈ R, q ∈ Q(M)}
(ii) M =

∪
{q +N |q ∈ Q(M)}

(iii) If q1, q2 ∈ Q(M) then (q1 +N)
∩
(q2 +N) ̸= ∅ if and only if q1 = q2.

Since every semiring is a semimodule over itself, every partitioning ideal of a
semiring R is a partitioning subsemimodule of the R-semimodule R.

Example 2.3. Let R = {0, 1, 2, · · · , n} and define x + y = max{x, y} and
xy = min{x, y} for each x, y ∈ R. By [1], Example 5, R together with the two
defined operations forms a semiring. Let M denote the set of all non- negative inte-
gers. Define a+b = max{a, b} for each a, b ∈ M . It is easy to show that (M,+) is a
commutative monoid with identity 0. Define a function fromR×M in toM , sending
(r,m) to min{r,m}(r ∈ R,m ∈ M). It is easy to see that M is an R-semimodule.
Now we show that N = R is an R-subsemimodule of M . Let a, b ∈ N, r ∈ R. Since
a, b ≤ n, so a+ b = max{a, b} ≤ n. Hence a+ b ∈ N . Also we have ra = min{r, a}.
If a ≤ r then ra = a ∈ N and if a > r, ra = r ∈ N . It is clear from the definition
of addition in M that 0 +N = N and k +N = {k} for each n < k(n ∈ N). Thus
N is a Q(M)-subsemimodule of M when Q(M) = {0}

∪
{k ∈ M |n < k}.

Proposition 2.4. Let R be a semiring, M an R-semimodule and N a Q(M)-
subsemimodule of M . Then N is a k-subsemimodule of M .

Proof. Let x, x+ y ∈ N . Since M =
∪
{q+N |q ∈ Q(M)} we can write y = q+ z

for some q ∈ Q(M) and z ∈ N . Therefore x+ y = x+ q + z = q + x+ z ∈ q +N .
Also x + y ∈ 0M +N . Hence (q + N)

∩
(0M +N) ̸= ∅ and so q = 0M . Therefore

y ∈ N , as required. 2

Definition 2.5. Let N be a subsemimodule of an R-semimoduleM . Then (N : M)
is defined as (N : M) = {r ∈ R | rM ⊆ N}. Clearly (N : M) is an ideal of R. The
annihilator of M is defined as (0 : M) and is denoted by ann(M). If ann(M) = 0
then M is called faithful.

Definition 2.6. LetM andM ′ be semimodules over the semiring R. A function f :
M −→ M ′ is said to be a homomorphism of R-semimodules if f(a+b) = f(a)+f(b)
and f(ra) = rf(a) for all r ∈ R and a, b ∈ M . The kernel of f , denoted by kerf , is
the set{x ∈ M |f(x) = 0}. Clearly kerf is a k-subsemimodule of M . If f is one-to-
one (onto), then f is called a monomorphism (an epimorphism). An isomorphism
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of R-semimodules is a one-to-one and onto homomorphism of R-semimodules. The
R-semimodules M and M ′ are called isomorphic and are denoted by M ∼= M ′ if
there exists an isomorphism from M to M ′.

Remark 2.7. Let M , M ′ are semimodules over the semiring R and f : M −→ M ′

be a homomorphism of R-semimodules. Then kerf is a k-subsemimodule of M .
Because if x, x+y ∈ kerf , we can write f(x+y) = f(x)+f(y). Hence 0 = 0+f(y)
and so y ∈ kerf , as required.

3. Semiprime Subsemimodules

Let M be a semimodule over a semiring R. A proper subsemimodule N of
M is called prime if for each r ∈ R and m ∈ M , rm ∈ N implies that r ∈ (N : M)
or m ∈ N .

If N is a prime subsemimodule of M , then (N : M) is a prime ideal of R(see
[3], Lemma 4). As it is known a good deal of research has been done for semiprime
submodule of a module during the last two decades. In this section we define
semiprime subsemimodules and try to find some of their essential properties.

Definition 3.1. A proper subsemimodule N of an R-semimodule M is called
semiprime if for each r ∈ R, m ∈ M and positive integer t, rtm ∈ N implies that
rm ∈ N .

Since the semiring R is an R-semimodule by itself, according to our defini-
tion, a proper ideal I of R is a semiprime ideal, if whenever atb ∈ I for every
a, b ∈ R and positive integer t, then ab ∈ I. If the semiprime subsemimo-
dule N of M is a k-subsemimodule (Q(M)-subsemimodule), then N is called a
semiprime k-subsemimodule (semiprime Q(M)-subsemimodule). In a similar way
if the semiprime ideal I of R is a k-ideal (Q-ideal), then I is called a semiprime
k-ideal (semiprime Q-ideal).

Proposition 3.2. Let R be a semiring, M an R-semimodule and N a proper
subsemimodule of M . Then N is semiprime if and only if r2m ∈ N(r ∈ R,m ∈ M)
implies that rm ∈ N .

Proof. Let N be a semiprime subsemimodule of M and r2m ∈ N , where r ∈ R
and m ∈ M . Then by definition rm ∈ N . Conversely, let rtm ∈ N , where r ∈ R,
m ∈ M and t ∈ Z+. Then r2(rt−2m) ∈ N and by hypothesis r(rt−2m) = rt−1m ∈
N . we write rt−1m = r2(rt−3m) ∈ N and so r(rt−3m) = rt−2m ∈ N . In this way
we finally obtain r2m ∈ N which implies that rm ∈ N . 2

Example 3.3. Let Z+ denote the semiring of non-negative integers with the usual
operations of addition and multiplication and I ̸= {0} be a proper ideal of Z+. It
is easy to show that I is semiprime if and only if it can be written in the form
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I = (p1 · · · pk) = (p1)
∩
· · ·

∩
(pk), where p1, · · · pk are distinct prime numbers.

Proposition 3.4. Let R be a semiring and M an R-semimodule. If N is a prime
subsemimodule of M , then N is a semiprime subsemimodule of M .

Proof. Let rtm ∈ N , where r ∈ R, m ∈ M and t ∈ Z+. Since N is prime so
m ∈ N or rt ∈ (N : M). If m ∈ N then rm ∈ N . Now let rt ∈ (N : M). Since
(N : M) is a prime ideal of R, so r ∈ (N : M). Hence rm ∈ N . In any case we
have rm ∈ N and so N is a semiprime subsemimodule of M . 2

Proposition 3.5. Let R be a semiring and M an R-semimodule. If N is a
semiprime subsemimodule of M , then (N : M) is a semiprime ideal of R.

Proof. Since N is a proper subsemimodule of M , so (N : M) ̸= R. Let
atb ∈ (N : M) in which a, b ∈ R and t ∈ Z+. Then atbM ⊆ N and so for every
m ∈ M , atbm ∈ N . Since N is a semiprime subsemimodule of M , so abm ∈ N and
hence ab ∈ (N : M), as required. 2

Definition 3.6. A semiring R is said to be an integral semidomain if for every
a, b ∈ R, ab = 0 implies that a = 0 or b = 0.

Example 3.7. It is clear that Z+ is an integral semidomain.

In the next example we show that the converse of Proposition 3.5 is not true
in general.

Example 3.8. Let R = Z+. Then M = Z+ ⊕ Z+ is an R-semimodule, N =
{r(9, 0)|r ∈ R} is a subsemimodule of M and (N : M) = 0. Since R is an inte-
gral semidomain, (N : M) = 0 is a prime and hence semiprime ideal of R. But
N is not a semiprime subsemimodule of M , because 32(2, 0) = (18, 0) ∈ N and
3(2, 0) = (6, 0) /∈ N .

The next theorem gives a characterization of semiprime subsemimodules.
This is specially useful when we work with multiplication semimodules.

Theorem 3.9. Let R be a semiring, M an R-semimodule and N a proper sub-
semimodule of M . Then N is semiprime if and only if for every ideal I of R,
subsemimodule K of M and positive integer t, ItK ⊆ N implies that IK ⊆ N .

Proof. Let I be an ideal of R and K a subsemimodule of M such that ItK ⊆ N ,
where t ∈ Z+. Consider the set S = {ax|a ∈ I, x ∈ K}. Then Ra is an ideal of R,
Rx is a subsemimodule of M and we have (Ra)t(Rx) ⊆ ItK ⊆ N . Hence atx ∈ N
which implies that ax ∈ N . So S ⊆ N and since S is a generating set for IK, we
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must have IK ⊆ N . Conversely, let a ∈ R, m ∈ M and atm ∈ N in which t ∈ Z+.
Take I = Ra and K = Rm. Then we have ItK ⊆ N . Hence IK ⊆ N which implies
that am ∈ N . The proof is now completed. 2

Remark 3.10. Note that since the semiring R is an R-semimodule by itself, then
by Theorem 3.9, I is a semiprime ideal of R, if and only if for every ideals J and
K of R and positive integer t, J tK ⊆ I implies that JK ⊆ I.

Multiplication modules play an important rule in module theory. We recall

Definition 3.11. Let R be a semiring. An R-semimodule M is called multi-
plication semimodule provided that for every subsemimodule N of M there exists
an ideal I of R such that N = IM .

Now we show that if M is a multiplication semimodule then the converse of
Proposition 3.5, is true.

Proposition 3.12. Let M be a multiplication semimodule over a semiring R and
N a proper subsemimodule of M . Then N is a semiprime subsemimodule of M if
and only if (N : M) is a semiprime ideal of R.

Proof. Let (N : M) be a semiprime ideal of R. Assume that ItK ⊆ N in which I
is an ideal of R, K a subsemimodule of M and t ∈ Z+. Since M is a multiplication
R-semimodule, we can write K = JM for some ideal J of R. Therefore ItJM ⊆ N
and so ItJ ⊆ (N : M). Since (N : M) is semiprime, IJ ⊆ (N : M). From this we
have IJM ⊆ N and so IK ⊆ N . Hence N is a semiprime subsemimodule of M .
The converse is true by Proposition 3.5. 2

Proposition 3.13. Let M be a semimodule over a semiring R and N a semiprime
k-subsemimodule of M . Then (N : M) is a semiprime k-ideal of R.

Proof. By Proposition 3.5, (N : M) is a semiprime ideal of R. Now let x, x+ y ∈
(N : M). Then for each m ∈ M we have xm, (x + y)m = xm + ym ∈ N . Hence,
since N is k-subsemimodule, ym ∈ N . Therefore y ∈ (N : M) and the assertion is
proved. 2

The next lemma gives conditions for a family of semiprime subsemimodules
to be semiprime.

Lemma 3.14. Let {Nγ}γ∈Γ be a non-empty family of semiprime subsemimod-
ules of a semimodule M over a semiring R. Then N =

∩
γ∈Γ Nγ is a semiprime

subsemimodule of M . If, in addition, {Nγ}γ∈Γ is totally ordered by inclusion, then
T =

∪
γ∈Γ Nγ is a semiprime subsemimodule of M provided that T ̸= M .

Proof. By [5], Lemma 1, N is a subsemimodule of M . Let rtm ∈ N , where r ∈ R,
m ∈ M and t ∈ Z+. Then for every γ ∈ Γ, rtm ∈ Nγ . SinceNγ is semiprime, we
have rm ∈ Nγ and this is true for every γ ∈ Γ. Therefore rm ∈

∩
γ∈Γ Nγ = N . The
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fact that {Nγ}γ∈Γ is totally ordered by inclusion makes it clear that T is a subsemi-
module of M and we can simply show that T is a semiprime subsemimodule of M .2

Definition 3.15. Let R be a semiring and I an ideal of R. The radical of I,
denoted by

√
I, is the set of all x ∈ R such that there exists a positive integer n

(depending on x) with xn ∈ I. The ideal I of R is called a radical ideal if I =
√
I.

Lemma 3.16. Let R be a semiring and P a semiprime ideal of R. Then P is a
radical ideal .

Proof. Clearly P ⊆
√
P . Let a ∈

√
P be an arbitrary element. Then for some

n ∈ Z+, an = an.1 ∈ P . Since P is semiprime, so a = a.1 ∈ P , as required. 2

The notion of primary submodule is fundamental when we work with mod-
ules. Similarly we define

Definition 3.17. Let M be a semimodule over a semiring R. A proper subse-
mimodule N of M is called primary if for each r ∈ R and m ∈ M , rm ∈ N implies
that m ∈ N or rn ∈ (N : M) for some positive integer n. Clearly every prime
subsemimodule is primary.

Since the semiring R is an R-semimodule by itself, according to our defini-
tion, a proper ideal I of R is a primary ideal, if whenever ab ∈ I for each a, b ∈ R,
then a ∈ I or bn ∈ I for some positive integer n. If the primary subsemimodule
N of M is a k-subsemimodule (Q(M)-subsemimodule) then N is called primary k-
subsemimodule (primary Q(M)-subsemimodule). Prime k-subsemimodule (prime
Q(M)-subsemimodule) is defined in a similar fashion. Also we can define prime
and primary k-ideal (Q-ideal) in the same way.

Definition 3.18. Let R be a semiring and M an R-semimodule. M is called
a cancellative semimodule if whenever rm = sm for elements m ∈ M and r, s ∈ R,
then r = s.

A semiring R is called a cancellative semiring if it is a cancellative semimo-
dule over itself.

Proposition 3.19. ([3], Proposition 1) Let R be a semiring, M a cancellative
R-semimodule and N a proper Q(M)-subsemimodule of M . Then (N : M) is a
Q-ideal of R.

Theorem 3.20. Let R be a semiring and M a cancellative R-semimodule. If N is
a semiprime Q(M)-subsemimodule of M , then (N : M) is a semiprime Q-ideal of
R.

Proof. This is clear by using Proposition 3.4 and Proposition 3.17. 2

Theorem 3.21. Let R be a semiring, M a cancellative R-semimodule and N
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a proper Q(M)-subsemimodule of M . Then N is a prime Q(M)-subsemimodule
if and only if N is primary Q(M)-subsemimodule and (N : M) is a semiprime
Q-ideal of R.

Proof. Let N be a prime Q(M)-subsemimodule of M . Then N is primary Q(M)-
subsemimodule and by Propositions 3.3, 3.4 and 3.17, (N : M) is a semiprime
Q-ideal of R. Conversely, let rm ∈ N where r ∈ R and m ∈ M . Assume that
m /∈ N . Since N is primary, so rn = rn.1 ∈ (N : M) for some n ∈ Z+. Since
(N : M) is semiprime, we have r = r.1 ∈ (N : M), as required. 2

Lemma 3.22. Let R be a semiring, M be an R-semimodule and N be a Q(M)-
subsemimodule of M . If x ∈ M , then there exists a unique q ∈ Q(M) such that
x+N ⊆ q +N .
Proof. Let x ∈ M . Since {q + N |q ∈ Q(M)} is a partition of M , there exists
q ∈ Q(M) such that x ∈ q + N . Let y ∈ x + N be an arbitrary element. Then
there exists n ∈ N such that y = x + n. Since x ∈ q + N , there exists n′ ∈ N
such that x = q + n′. So y = x + n = (q + n′) + n = q + (n′ + n) ∈ q +N . Thus
x +N ⊆ q +N . The uniqueness of q is an immediate consequence of part (iii) of
Definition 2.2(d), because if there exists also q′ ∈ Q(M) such x+N ⊆ q′ +N then
(q +N)

∩
(q′ +N) ̸= ∅ and hence q = q′. 2

Remark 3.23. Let M be a semimodule over a semiring R and N a Q(M)-
subsemimodule of M . By Lemma 3.22, we can define a binary operation

⊕
on

{q +N |q ∈ Q(M)} as follows:
(q1 + N)

⊕
(q2 + N) = q3 + N , where q3 is the unique element in Q(M) such

that q1 + q2 + N ⊆ q3 + N . Now let r ∈ R and suppose that q1 + N , q2 + N ∈
{q + N |q ∈ Q(M)} are such that q1 + N = q2 + N . Then q1 = q2 by Defi-
nition 2.2(d) and we must have rq1 + N = rq2 + N . Hence we can define an
operation

⊙
from R × {q + N |q ∈ Q(M)} into {q + N |q ∈ Q(M)} in the form

r
⊙

(q + N) = rq + N . It can be shown that {q + N |q ∈ Q(M)} together with⊕
,
⊙

, denoted by ({q+N |q ∈ Q(M)},
⊕

,
⊙

), is an R-semimodule. Also we have
the next Theorem.

Theorem 3.24. ([2], Theorem 2.4) Let R be a semiring, M an R-semimodule, N
a subsemimodule of M and Q1(M) and Q2(M) non-empty subsets of M such that
N is both a Q1(M)-subsemimodule and Q2(M)-subsemimodule. Then ({q +N |q ∈
Q1(M)},

⊕
,
⊙

) ∼= ({q +N |q ∈ Q2(M)},
⊕

,
⊙

).

Remark 3.25. (Quotient semimodule) If R is a semiring, M an R-semimodule
and N a subsemimodule of M , then it is possible that N can be considered to be a
Q(M)-subsemimodule with respect to many different subsetsQ(M) ofM . However,
Theorem 3.24, implies that the structure ({q+N |q ∈ Q(M)},

⊕
,
⊙

) is essentially
independent of the choice of Q(M). Thus, if N is a Q(M)-subsemimodule of M ,
the semimodule ({q +N |q ∈ Q(M)},

⊕
,
⊙

) is called a quotient semimodule of M
by N and is denoted by (M/N,

⊕
,
⊙

) or M/N for short. Also by [2], Lemma 2.3,
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there exists a unique element q0 ∈ Q(M) such that q0 + N = N . Thus q0 + N is
the zero element of M/N .
To prove our next result we need the following three theorems.

Theorem 3.26. ([3], Theorem 1) Let R be a semiring, M an R-semimodule, N
a Q(M)-subsemimodule of M and L a k-subsemimodule of M with N ⊆ L. Then
L/N = {q +N |q ∈ L

∩
Q(M)} is a k-subsemimodule of M/N .

Theorem 3.27. ([3], Theorem 2) Let R be a semiring, M an R-semimodule,
N a Q(M)-subsemimodule of M and L a k-subsemimodule of M/N . Then L is in
the form T/N , where T is a k-subsemimodule of M which contains N .

Theorem 3.28. ([3], Theorem 4) Let R be a semiring, M an R-semimodule,
N a Q(M)-subsemimodule of M and let T , L be k-subsemimodules of M contain-
ing N . Then T/N = L/N if and only if T = L.

Theorem 3.29. Let N be a Q(M)-subsemimodule of a semimodule M over a
semiring R and T be a k-subsemimodule of M with N ⊆ T . Then T is a semiprime
R-subsemimodule of M if and only if T/N is a semiprime R-subsemimodule of
M/N .

Proof. Let T be a semiprime R-subsemimodule of M . By Definition 3.1, T is a
proper subsemimodule of M and so, T/N ̸= M/N , by Theorem 3.28. To show that
T/N is a semiprime R-subsemimodule of M/N , let rt(q1 +N) = rtq1 +N ∈ T/N
where q1 ∈ Q(M), r ∈ R and t ∈ Z+. It follows from Theorem 3.26, that rtq1 ∈ T
and since T is semiprime, we have rq1 ∈ T . Hence r(q1 +N) ∈ T/N , as required.
Conversely, let T/N be a semiprime R-subsemimodule of M/N . Hence T/N is a
proper R-subsemimodule of M/N and so T ̸= M , by Theorem 3.28. Let rla ∈ T
where r ∈ R, a ∈ M and l ∈ Z+. Since a ∈ M and N is a Q(M)-subsemimodule of
M , there are elements q ∈ Q(M) and n ∈ N such that a = q + n, by Lemma 3.22.
So rla = rlq + rln ∈ T . Since T is a k-subsemimodule of M and rln ∈ N ⊆ T ,
so rlq ∈ T . Therefore, rl(q + N) = rlq + N ∈ T/N . Then T/N semiprime gives
r(q +N) ∈ T/N and so rq +N ∈ T/N . Hence rq ∈ T and so ra ∈ T . The proof is
now completed. 2

4. Strong Semiprime k-Subsemimodules

In this section we investigate strong semiprime k-subsemimodules will lead
us to some interesting results. First we recall some definitions.

Definition 4.1. (a) A proper ideal I of a semiring R is said to be a strong ideal
if for each a ∈ I there exists b ∈ I such that a+ b = 0. If the strong ideal I of R is
a k-ideal, then we call I a strong k-ideal. If the strong k-ideal I of R is semiprime,
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then I is called a strong semiprime k-ideal. If the strong k-ideal I of R is a radical
ideal, then we call I a strong k-radical ideal.

(b) A subsemimodule N of an R-semimodule M is said to be a strong sub-
semimodule if for each a ∈ N there exists b ∈ N such that a + b = 0. Clearly,
every submodule of a module over a ring R is a strong subsemimodule. If a
strong subsemimodule N of M is a k-subsemimodule, then we call N a strong
k-subsemimodule. If a strong k-subsemimodule N of M is semiprime, then N is
called a strong semiprime k-subsemimodule.

Proposition 4.2. ([5], Proposition 1) Let M be a semimodule over a semiring R.
Then the following statements hold :

(i) If N is a strong subsemimodule of M , then N is a k-subsemimodule.
(ii) If I is a strong ideal of R, then IM is a strong k-subsemimodule.

Example 4.3. The monoid M = (Z6,+6) is a semimodule over (Z+,+, ·). We can
show that N = {0, 2, 4} is a strong Q(M)-subsemimodule of M (and so k-strong
subsemimodule of M , by Proposition 4.2(i)), where Q(M) = {0, 1}.

Lemma 4.4. ([4], Proposition 2) Let M be a finitely generated semimodule over a
semiring R and I be a strong k-radical ideal of R. Then (IM : M) = I if and only
if ann(M) ⊆ I.

Proposition 4.5. Let M be a finitely generated semimodule over a semiring R,
P a strong k-radical ideal of R containing ann(M) and I an ideal of R such that
IM ⊆ PM . Then I ⊆ P .

Proof. By Lemma 4.4, we have (PM : M) = P . Now let r ∈ I be an arbitrary
element. Then rM ⊆ IM ⊆ PM which implies r ∈ (PM : M) = P , as required. 2

Theorem 4.6. Let M be a finitely generated multiplication semimodule over a
semiring R and P a strong semiprime k-ideal of R containing ann(M). Then PM
is a strong semiprime k-subsemimodule of M .

Proof. By Lemma 3.16, P is a radical ideal of R and so (PM : M) = P , by Lemma
4.4. On the other hand, by Proposition 4.2(ii), PM is a strong k-subsemimodule of
M . Now it is enough to show that PM is a semiprime subsemimodule of M . Let
I be an ideal of R, K a subsemimodule of M and t ∈ Z+ such that ItK ⊆ PM .
Since M is a multiplication R-semimodule, there exists an ideal J of R such that
K = JM . Hence ItJM ⊆ PM and by Proposition 4.5, ItJ ⊆ P . But P is a
semiprime ideal of R and so IJ ⊆ P . Hence IJM ⊆ PM , that is, IK ⊆ PM . The
theorem is now proved. 2
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Definition 4.7. (a) A semiring R is called an S-semiring if every proper ideal in
R is a product of strong semiprime k-ideals.

(b) A semimodule M over a semiring R is called an S-semimodule if every
proper subsemimodule N of M either is strong semiprime k-subsemimodule or
has a factorization in the form N = P1 · · ·PnN

⋆ in which P1, · · · , Pn are strong
semiprime k-ideals of R and N⋆ is a strong semiprime k-subsemimodule of M .

Example 4.8. A Dedekind domain is an integral domain R in which every proper
ideal is the product of a finite number of prime ideals. Let M be a multiplication
module over a Dedekind domain R. Then M is clearly an S-semimodule.

Theorem 4.9. Let M be a faithful finitely generated multiplication semimodule
over an S-semiring R. Then M is an S-semimodule.

Proof. Let N be a proper subsemimodule of M . Since M is a multiplication se-
mimodule, we can write N = IM for some ideal I of R. Since R is an S-semiring,
so I = P1 · · ·Pn, where Pi(1 ≤ i ≤ n) is a strong semiprime k-ideal of R and
so N = P1 · · ·PnM . By Theorem 4.6, PiM(1 ≤ i ≤ n) is a strong semiprime k-
subsemimodule of M . Therefore N either is a strong semiprime k-subsemimodule
of M or has a factorization in the form N = P1 · · ·Pn−1N

⋆, where N⋆ = PnM . 2
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