A NOTE ON THE EXISTENCE OF A UNIVERSAL POLYTOPE AMONG REGULAR 4-POLYTOPES

Jin Akiyama ${ }^{1}$, Sin Hitotumatu ${ }^{2}$, and Ikuro Sato ${ }^{3}$
${ }^{1}$ Research Center for Math and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 Japan, ja@jin-akiyama.com
${ }^{2}$ Research Institute of Mathematical Science, University of Kyoto ${ }^{3}$ Department of Pathology, Research Institute, Miyagi Cancer Center, 47-1, Medeshima-shiote (Azanodayama), Natori-city, Miyagi 981-1293 Japan, sato-iku510@miyagi-pho.jp

Abstract

For a polytope P, the set of all of its vertices is denoted by $V(P)$. For polytopes P and Q of the same dimension, we write $P \subset Q$ if $V(P) \subset V(Q)$. An n-polytope (n-dimensional polytope) Q is said to be universal for a family \mathfrak{P}_{n} of all regular n-polytopes if $P \subset Q$ holds for every $P \in \mathfrak{P}_{n}$. The set \mathfrak{P}_{4} consists of six regular 4-polytopes. It is stated implicitly in Coxeter [2] by applying finite discrete groups that a regular 120 -cell is universal for \mathfrak{P}_{4}. Our purpose of this note is to give a simpler proof by using only metric properties. Furthermore, we show that the corresponding property does not hold in any other dimension but 4.

Key words and Phrases: Inclusion property.

Abstract

Abstrak. Untuk suatu politop P, himpunan semua titik-titiknya dinotasikan dengan $V(P)$. Untuk politop P dan Q dengan dimensi sama, kita tulis $P \subset Q$ jika $V(P) \subset V(Q)$. Sebuah politop- n (politop berdimensi- n) Q dikatakan menjadi universal untuk suatu keluarga \mathfrak{P}_{n} dari semua politop- n regular jika $P \subset Q$ berlaku untuk setiap $P \in \mathfrak{P}_{n}$. Himpunan \mathfrak{P}_{4} memuat 6 politop- n regular. Telah dinyatakan secara implisit di Coxeter [2] dengan menerapkan grup diskrit hingga bahwa sebuah sel-120 regular adalah universal terhadap \mathfrak{P}_{4}. Pada paper ini kami akan memberi sebuah bukti yang lebih sederhana dengan hanya menggunakan sifat-sifat metrik. Lebih jauh kami menunjukkan bahwa sifat-sifat yang terkait tidak dipenuhi, kecuali pada dimensi 4.

Kata kunci: Sifat inklusi.

[^0]
1. Introduction

For a polytope P, let us call the set of all of its vertices the vertex set of P and denote it by $V(P)$. In this paper we investigate the problem of deciding whether a chosen proper subset of the vertex set of a given polytope is the vertex set of some other polytope or not.

Definition 1.1. For polytopes P and Q of the same dimension, we say that P is contained in Q and write $P \subset Q$, if $V(P) \subset V(Q)$ holds.
Definition 1.2. We say that an n-dimensional polytope Q is a universal polytope for a family \mathfrak{P} of n-dimensional regular polytopes, if $P \subset Q$ holds for every $P \in \mathfrak{P}$.

It is well known (see [2]) that there are 5 kinds of regular polytopes in dimension 3,6 kinds in dimension 4 and 3 kinds in dimension $n \geq 5$. We investigate the question whether there exists a universal regular polytope or not in each dimension. We take up the case of dimension 3 in Section 2, of dimension 4 in Section 3 and of dimension $n \geq 5$ in Section 5, and obtain results on the inclusion relation among regular polytopes, and in particular, on the existence of a universal polytope in each dimension.

2. Inclusion Relation among 3-dimensional Regular Polyhedra and Non-existence of Universal Polyhedron in Dimension 3

There are 5 kinds of regular polyhedra in dimension 3: regular tetrahedra, cubes, regular octahedra, regular dodecahedra and regular icosahedra, and they have $4,8,6,20,12$ vertices, respectively. As shown in figure 1(a) below, if we choose 4 points (8 points) from the vertex set, consisting of 20 points, of a regular dodecahedron suitably, then we get the vertex set of a regular tetrahedron (a cube, respectively).

However, the situation is different for the case of regular octahedra and of regular icosahedra. Namely, it is well-known that no subset of the vertex set of a regular dodecahedron can be the vertex set of a regular octahedron or of a regular icosahedron. Since a regular dodecahedron has the most number of vertices among the 3-dimensional regular polyhedra, a universal polyhedron, if it exists in 3 -dimension, must be a regular dodecahedron. Thus we conclude that there is no universal polyhedron among 3-dimensional polyhedra. (However, as indicated in figure $1(b)$ below, it is well-known that the vertex set of a regular octahedron or a regular icosahedron can be obtained from a cube or a dodecahedron by choosing the centroid from suitably chosen faces of a cube or a dodecahedron.)

Figure 1. Inclusion relation among regular polyhedra

3. Inclusion Relation among 4-dimensional Regular Polytopes and Existence of Universal Polytopes in Dimension 4

There are 6 types of 4-dimensional regular polytopes. They are regular 5-cell (denoted by C_{5}, in the sequel), regular 8-cell $\left(C_{8}\right)$, regular 16-cell $\left(C_{16}\right)$, regular 24-cell $\left(C_{24}\right)$, regular 120-cell $\left(C_{120}\right)$ and regular 600 -cell $\left(C_{600}\right)$. They have the vertex sets consisting of $5,16,8,24,600,120$ vertices, respectively. The following theorem describes the inclusion relationship among these 6 types.

Theorem 3.1. The regular 120-cell is a universal polytope for 4 -dimensional regular polytopes. More precisely, the following inclusion relations hold:
(i) $C_{16} \subset C_{8} \subset C_{24} \subset C_{600} \subset C_{120}$
(ii) $C_{5} \subset C_{120}$

Proof. The book by Coxeter [2] lists in pages $156 \sim 158$ the coordinates of all the vertices for each of the 6 kinds of 4 -dimensional regular polytopes. However, Coxeter uses different coordinate systems for describing coordinates for polytopes in classes C_{24} and C_{120}, and for those in classes $C_{5}, C_{16}, C_{8}, C_{600}$. Let us call the former α-system and the latter β-system. In order to establish the inclusion relation we seek, let us transform α-system to β-system.

For this purpose, let us denote by \mathfrak{P} the set of 24 points consisting of all possible permutations of the 4 points $(\pm 2, \pm 2,0,0)$, (here and below, all possible combinations of the signs are allowed) chosen from the vertex set of C_{120}. Let us also denote by \mathfrak{Q} the set of 24 points, 16 of which are $(\pm 2, \pm 2, \pm 2, \pm 2)$ obtained by doubling the coordinates in β-system of the vertices of C_{8} and, 8 others are all possible permutations of $(\pm 4,0,0,0)$, which are obtained by doubling the coordinates in β-system of the vertices of C_{16}. It is then enough to find a 4×4 matrix R which gives a linear transformation mapping 4 pairwise orthogonal points
$P_{1}(2,2,0,0), P_{2}(2,-2,0,0), P_{3}(0,0,2,2), P_{4}(0,0,2,-2)$ in \mathfrak{P} onto 4 pairwise orthogonal points $Q_{1}(4,0,0,0), Q_{2}(0,4,0,0), Q_{3}(0,0,4,0), Q_{4}(0,0,0,4)$ in \mathfrak{Q}, respectively. For example,

$$
R=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

gives such a linear transformation. This is an orthogonal transformation followed by multiplication by $\sqrt{2}$.

According to Coxeter's book, the coordinates in α-system of the 600 vertices of C_{120} are given as follows (we denote by τ the golden ratio $\frac{1+\sqrt{5}}{2}$):
All possible permutations of $(\pm 2, \pm 2,0,0),(\pm \sqrt{5}, \pm 1, \pm 1, \pm 1),\left(\pm \tau, \pm \tau, \pm \tau, \pm \frac{1}{\tau^{2}}\right)$, $\left(\pm \tau^{2}, \pm \frac{1}{\tau}, \pm \frac{1}{\tau}, \pm \frac{1}{\tau}\right)$, and all possible even permutations of $\left(\pm \tau^{2}, \frac{1}{\tau^{2}}, \pm 1,0\right)$,
$\left(\pm \sqrt{5}, \pm \frac{1}{\tau}, \pm \tau, 0\right),\left(\pm \tau, \pm 1, \pm \tau, \pm \frac{1}{\tau}\right)$. If we transform these points by the linear transformation given by R, we get the following disjoint sets of points (we denote below by σ the number $\frac{3 \sqrt{5}+1}{2}$ and by σ^{\prime} the number $\frac{3 \sqrt{5}-1}{2}$):

A : The set of 16 points consisting of $(\pm 2, \pm 2, \pm 2, \pm 2)$
B : The set of 8 points consisting of all possible permutations of $(\pm 4,0,0,0)$
C : The set of 192 points consisting of all possible permutations of $(\pm 2 \tau, \pm 2$, $\left.\pm \frac{2}{\tau}, 0\right)$
D : The set of 256 points obtained by putting an even number of minus signs to coordinates of each point in the set of all permutations of the numbers $(\sqrt{5}, \sqrt{5}, \sqrt{5}, 1),\left(\tau^{2}, \tau^{2}, \frac{\sqrt{5}}{\tau}, \frac{1}{\tau}\right),\left(\sigma, \frac{1}{\tau}, \frac{1}{\tau}, \frac{1}{\tau}\right),\left(\sqrt{5} \tau, \tau, \frac{1}{\tau^{2}}, \frac{1}{\tau^{2}}\right)$
E : The set of 128 points obtained by putting an odd number of minus signs to coordinates of each point in the set of all permutations of the numbers $\left(\sigma^{\prime}, \tau, \tau, \tau\right),(3, \sqrt{5}, 1,1)$
Now, using β-system of coordinates, we can compute distances between pairs of points, dihedral angles and dichoral angles, and can obtain the following results.
(1) : $V\left(C_{5}\right)$ is the set of 5 points consisting of all possible permutations of the point $(-\sigma \prime, \tau, \tau, \tau)$ belonging to the set E and the point $(-2,-2,-2,-2)$ belonging to the set A
(2) : $V\left(C_{8}\right)=A$
(3) : $V\left(C_{16}\right)=B$
(4) : $V\left(C_{24}\right)=A \cup B$
(5) : $V\left(C_{120}\right)=A \cup B \cup C \cup D \cup E$
(6) : $V\left(C_{600}\right)=A \cup B \cup C^{\prime}$, where C^{\prime} is a subset of C consisting of 96 points obtained by applying all possible even permutations to $\left(\pm 2 \tau, \pm 2, \pm \frac{2}{\tau}, 0\right)$.
From (1) $\sim(6)$ we see that the vertex sets of $C_{5}, C_{8}, C_{16}, C_{24}, C_{600}$ are all proper subsets of the vertex set of C_{120}, and therefore, we conclude that C_{120} is a universal polytope for 4 -dimensional regular polytopes.

Although Theorem 3.1 above shows that C_{120} is a universal polytope for 4dimensional polytopes, we note that the inclusion relation splits in two branches. You might think that, by splitting 120 vertices of C_{600} suitably into 24 groups of 5 vertices each, it may be possible to obtain 24 concentric 5 -cells. However, we can show that such a procedure is impossible. Let us first quote the following theorem (see [1]) which we need for giving a proof for our Theorem 3.2.

For a given polytope Π with v vertices $P_{1}, P_{2}, \cdots P_{v}$, we define the diagonal weight of Π as the sum of the squares of the lengths of all diagonals and sides of Π, and denote it by $\alpha(\Pi)$. Namely,

$$
\alpha(\Pi)=\sum_{P_{i}, P_{j}}\left(d\left(P_{i}, P_{j}\right)\right)^{2},
$$

where $d\left(P_{i}, P_{j}\right)$ is the distance between P_{i} and P_{j}, and the sum is taken over all possible pairs of P_{i} and P_{j}.

Then we have
Theorem A. Let R be a regular n-dimensional polytope with v vertices $P_{1}, P_{2}, \cdots P_{v}$ which is inscribed in a unit n-sphere. Then the diagonal weight $\alpha(R)$ is v^{2} for every dimension $n \geq 2$.

Using this theorem we obtain the following:
Theorem 3.2. The regular 5 -cell C_{5} is not contained in the regular 600 -cell C_{600}; namely, $C_{5} \not \subset C_{600}$.

Proof.Let us compute the length of the side of C_{5}. 5 vertices of C_{5} lie on its circum-sphere of radius $4 . C_{5}$ also has 10 sides, and their length $d=d_{i}(1 \leq i \leq 10)$ are all equal. Therefore, by Theorem A, $\sum_{i}\left(\frac{d_{i}}{4}\right)^{2}=\sum\left(\frac{d}{4}\right)^{2}=5^{2}$. Consequently, each side has the length $d=2 \sqrt{10}$. On the other hand, the lengths of the diagonals of the C_{600} which is inscribed in the same sphere are

$$
2(\sqrt{5}-1), 4,2 \sqrt{10-2 \sqrt{5}}, 4 \sqrt{2}, 2(\sqrt{5}+1), 4 \sqrt{3}, 2 \sqrt{10+2 \sqrt{5}}, 8
$$

listed in increasing order. Since these numbers are all different from $2 \sqrt{10}$, we conclude that $C_{5} \not \subset C_{600}$.

4. Inclusion Relation among n-dimensional Polytopes for $n \geq 5$ and
 Non-existence of Universal Polytopes in Dimensions $n \geq 5$

There are 3 kinds of regular polytopes in dimension $n \geq 5$. They are n simplexes (denoted in the sequel by α_{n}), n-orthoplexes $\left(\beta_{n}\right)$ and n-cubes $\left(\gamma_{n}\right)$, and they have $n+1,2 n, 2^{n}$ vertices, respectively.

Theorem 4.1. There exists no universal polytope for n-dimensional regular polytopes for any $n \geq 5$.

Proof. Let us determine the lengths and the number of sides and diagonals for each of the 3 kinds of regular n-dimensional polytopes.

(A) For α_{n} :

Let the coordinates of n among the $n+1$ vertices of the n-simplex be given by the all permutations of $(1,0,0, \cdots, 0)$. By symmetry, we can write (x, x, \cdots, x). The distances between any pair of the vertices are all equal, and their value is $\sqrt{2}$. Hence, we have $(x-1)^{2}+(n-1) x^{2}=2$, from which we conclude that $x=\frac{1 \pm \sqrt{1+n}}{n}$. We choose here $x=\frac{1-\sqrt{1+n}}{n}$. Then, we see that the radius of the circum-sphere of our simplex must equal $\sqrt{\frac{n}{n+1}}$. Hence, for the n-simplex whose circum-sphere has radius 1 , the length between any pair of vertices and the number of such distinct pairs (i.e., its sides) are $L_{1}=\sqrt{\frac{2(n+1)}{n}}$ and $n_{1}=\frac{(n+1) n}{2}$, respectively.
(B) For β_{n} :

Let the coordinates of the $2 n$ vertices of an n-orthoplex be given by all the permutations of $(\pm 1,0,0, \cdots, 0)$. Then the radius of the circum-sphere for the n orthoplex is 1 , and the length of a side of this orthoplex is $L_{1}=\sqrt{2}$ and the number of sides is $n_{1}=\frac{n(n-1)}{2}$, and the length of a diagonal is $L_{2}=2$ and the number of diagonals is $n_{2}=n$.
(C) For γ_{n} :
Let the coordinates of the 2^{n} vertices of an n-cube be given by all the permutations of $(\pm 1, \pm 1, \cdots, \pm 1)$. Then the radius of the circum-sphere of this n-cube is \sqrt{n}. Hence for the n-cube whose circum-sphere has radius 1 , the lengths of its sides and diagonals and their numbers are given by $L_{i}=2 \sqrt{\frac{i}{n}}$ and $n_{i}=\frac{n!}{i!(n-i)!}$ for $1 \leq i \leq n$.

Now in order to complete the proof, let us suppose that there exists a universal polytope in n-dimension $(n \geq 5)$. Then it has to be an n-cube, since n-cubes have the largest number of vertices among regular n-polytopes. But then from $(A) \sim(C)$ we conclude that there must exist positive integers k and ℓ for which $\sqrt{\frac{4 k}{n}}=\sqrt{\frac{2(n+1)}{n}}$ and $\sqrt{\frac{4 \ell}{n}}=\sqrt{2}=\sqrt{\frac{2 n}{n}}$ must hold. However, from the former identity we get $4 k=2(n+1)$ and hence $n=2 k-1$, implying that n must be odd, while from the latter identity we get $4 \ell=2 n$ and hence $n=2 \ell$, implying that n must be even. Thus we get a contradiction, and therefore, we conclude that there is no universal polytope in dimension $n \geq 5$.

5. Concluding Remarks

We conclude from Theorem 1, Theorem 2 and Theorem 3 that only in 4dimension, universal polytopes exist. In this sense, 4 -dimensional space exhibits a very different characteristic from other dimensions.

The referees pointed out that an old theorem by Hess says that every regular star-polytope of dimension n has the same vertices as a regular convex polytope of dimension n (see Theorem 7D6 in [3]). When applied with $n=4$, Theorem 3.1 can be stated in the stronger form: The 120-cell is universal among all regular 4 -polytopes, convex or starry.

Acknowledgement. We thank the anonymous referee and Edy Baskoro for suggesting us invaluable comments to make the paper stronger.

References

[1] Akiyama, J., and Sato, I., "On the Diagonal Weights of Inscribed Polytopes", to appear in Elemente der Mathematik.
[2] Coxeter, H.S.M., Regular Polytopes, Dover Publications, 1973.
[3] McMullen, P., and Schulte E., Abstract Regular Polytopes, Cambridge Univ. Press, 2002.

[^0]: 2000 Mathematics Subject Classification: 52B05, 52B45
 Received: 30-08-2012, revised: 13-01-2013, accepted: 17-01-2013.

