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Abstract. For a polytope P , the set of all of its vertices is denoted by V (P ). For

polytopes P and Q of the same dimension, we write P ⊂ Q if V (P ) ⊂ V (Q). An

n-polytope (n-dimensional polytope) Q is said to be universal for a family Pn of all

regular n-polytopes if P ⊂ Q holds for every P ∈ Pn. The set P4 consists of six

regular 4-polytopes. It is stated implicitly in Coxeter [2] by applying finite discrete

groups that a regular 120-cell is universal for P4. Our purpose of this note is to

give a simpler proof by using only metric properties. Furthermore, we show that

the corresponding property does not hold in any other dimension but 4.
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Abstrak. Untuk suatu politop P , himpunan semua titik-titiknya dinotasikan de-

ngan V (P ). Untuk politop P dan Q dengan dimensi sama, kita tulis P ⊂ Q jika

V (P ) ⊂ V (Q). Sebuah politop-n (politop berdimensi-n) Q dikatakan menjadi uni-

versal untuk suatu keluarga Pn dari semua politop-n regular jika P ⊂ Q berlaku

untuk setiap P ∈ Pn. Himpunan P4 memuat 6 politop-n regular. Telah dinyatakan

secara implisit di Coxeter [2] dengan menerapkan grup diskrit hingga bahwa sebuah

sel-120 regular adalah universal terhadap P4. Pada paper ini kami akan memberi

sebuah bukti yang lebih sederhana dengan hanya menggunakan sifat-sifat metrik.

Lebih jauh kami menunjukkan bahwa sifat-sifat yang terkait tidak dipenuhi, kecuali

pada dimensi 4.

Kata kunci: Sifat inklusi.
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1. Introduction

For a polytope P , let us call the set of all of its vertices the vertex set of
P and denote it by V (P ). In this paper we investigate the problem of deciding
whether a chosen proper subset of the vertex set of a given polytope is the vertex
set of some other polytope or not.

Definition 1.1. For polytopes P and Q of the same dimension, we say that P is
contained in Q and write P ⊂ Q, if V (P ) ⊂ V (Q) holds.

Definition 1.2. We say that an n-dimensional polytope Q is a universal polytope
for a family P of n-dimensional regular polytopes, if P ⊂ Q holds for every P ∈ P.

It is well known (see [2]) that there are 5 kinds of regular polytopes in dimen-
sion 3, 6 kinds in dimension 4 and 3 kinds in dimension n ≥ 5. We investigate the
question whether there exists a universal regular polytope or not in each dimension.
We take up the case of dimension 3 in Section 2, of dimension 4 in Section 3 and of
dimension n ≥ 5 in Section 5, and obtain results on the inclusion relation among
regular polytopes, and in particular, on the existence of a universal polytope in
each dimension.

2. Inclusion Relation among 3-dimensional Regular Polyhedra and
Non-existence of Universal Polyhedron in Dimension 3

There are 5 kinds of regular polyhedra in dimension 3: regular tetrahedra,
cubes, regular octahedra, regular dodecahedra and regular icosahedra, and they
have 4, 8, 6, 20, 12 vertices, respectively. As shown in figure 1(a) below, if we choose
4 points (8 points) from the vertex set, consisting of 20 points, of a regular do-
decahedron suitably, then we get the vertex set of a regular tetrahedron (a cube,
respectively).

However, the situation is different for the case of regular octahedra and of
regular icosahedra. Namely, it is well-known that no subset of the vertex set of
a regular dodecahedron can be the vertex set of a regular octahedron or of a re-
gular icosahedron. Since a regular dodecahedron has the most number of vertices
among the 3-dimensional regular polyhedra, a universal polyhedron, if it exists in
3-dimension, must be a regular dodecahedron. Thus we conclude that there is no
universal polyhedron among 3-dimensional polyhedra. (However, as indicated in
figure 1(b) below, it is well-known that the vertex set of a regular octahedron or a
regular icosahedron can be obtained from a cube or a dodecahedron by choosing
the centroid from suitably chosen faces of a cube or a dodecahedron.)
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Figure 1. Inclusion relation among regular polyhedra

3. Inclusion Relation among 4-dimensional Regular Polytopes and
Existence of Universal Polytopes in Dimension 4

There are 6 types of 4-dimensional regular polytopes. They are regular 5-cell
(denoted by C5, in the sequel), regular 8-cell (C8), regular 16-cell (C16), regular
24-cell (C24), regular 120-cell (C120) and regular 600-cell (C600). They have the
vertex sets consisting of 5, 16, 8, 24, 600, 120 vertices, respectively. The following
theorem describes the inclusion relationship among these 6 types.

Theorem 3.1. The regular 120-cell is a universal polytope for 4-dimensional re-
gular polytopes. More precisely, the following inclusion relations hold:

(i) C16 ⊂ C8 ⊂ C24 ⊂ C600 ⊂ C120

(ii) C5 ⊂ C120

Proof. The book by Coxeter [2] lists in pages 156 ∼ 158 the coordinates of all
the vertices for each of the 6 kinds of 4-dimensional regular polytopes. However,
Coxeter uses different coordinate systems for describing coordinates for polytopes
in classes C24 and C120, and for those in classes C5, C16, C8, C600. Let us call the
former α-system and the latter β-system. In order to establish the inclusion relation
we seek, let us transform α-system to β-system.

For this purpose, let us denote by P the set of 24 points consisting of all
possible permutations of the 4 points (±2,±2, 0, 0), (here and below, all possible
combinations of the signs are allowed) chosen from the vertex set of C120. Let
us also denote by Q the set of 24 points, 16 of which are (±2,±2,±2,±2) ob-
tained by doubling the coordinates in β-system of the vertices of C8 and, 8 others
are all possible permutations of (±4, 0, 0, 0), which are obtained by doubling the
coordinates in β-system of the vertices of C16. It is then enough to find a 4 × 4
matrix R which gives a linear transformation mapping 4 pairwise orthogonal points
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P1(2, 2, 0, 0), P2(2,−2, 0, 0), P3(0, 0, 2, 2), P4(0, 0, 2,−2) in P onto 4 pairwise or-
thogonal points Q1(4, 0, 0, 0), Q2(0, 4, 0, 0), Q3(0, 0, 4, 0), Q4(0, 0, 0, 4) in Q, re-
spectively. For example,

R =


1 1 0 0
1 −1 0 0
1 0 1 1
0 0 1 −1


gives such a linear transformation. This is an orthogonal transformation followed
by multiplication by

√
2.

According to Coxeter’s book, the coordinates in α-system of the 600 vertices

of C120 are given as follows (we denote by τ the golden ratio 1+
√
5

2 ):

All possible permutations of (±2,±2, 0, 0), (±
√
5,±1,±1,±1), (±τ,±τ,±τ,± 1

τ2 ),

(±τ2,± 1
τ ,±

1
τ ,±

1
τ ), and all possible even permutations of (±τ2, 1

τ2 ,±1, 0),

(±
√
5,± 1

τ ,±τ, 0), (±τ,±1,±τ,± 1
τ ). If we transform these points by the linear

transformation given by R, we get the following disjoint sets of points (we denote

below by σ the number 3
√
5+1
2 and by σ′ the number 3

√
5−1
2 ):

A : The set of 16 points consisting of (±2,±2,±2,±2)
B : The set of 8 points consisting of all possible permutations of (±4, 0, 0, 0)
C : The set of 192 points consisting of all possible permutations of (±2τ ,±2,

± 2
τ
,0)

D : The set of 256 points obtained by putting an even number of minus signs
to coordinates of each point in the set of all permutations of the numbers

(
√
5,
√
5,
√
5, 1), (τ2, τ2,

√
5

τ , 1
τ ), (σ,

1
τ ,

1
τ ,

1
τ ), (

√
5τ, τ, 1

τ2 ,
1
τ2 )

E : The set of 128 points obtained by putting an odd number of minus signs
to coordinates of each point in the set of all permutations of the numbers
(σ′, τ, τ, τ), (3,

√
5, 1, 1)

Now, using β-system of coordinates, we can compute distances between pairs
of points, dihedral angles and dichoral angles, and can obtain the following results.

(1) : V (C5) is the set of 5 points consisting of all possible permutations of the
point (−σ′, τ, τ, τ) belonging to the set E and the point (−2,−2,−2,−2)
belonging to the set A

(2) : V (C8) = A
(3) : V (C16) = B
(4) : V (C24) = A ∪B
(5) : V (C120) = A ∪B ∪ C ∪D ∪ E
(6) : V (C600) = A ∪ B ∪ C ′, where C ′ is a subset of C consisting of 96 points

obtained by applying all possible even permutations to (±2τ,±2,± 2
τ , 0).

From (1) ∼ (6) we see that the vertex sets of C5, C8, C16, C24, C600 are all proper
subsets of the vertex set of C120, and therefore, we conclude that C120 is a universal
polytope for 4-dimensional regular polytopes. 2
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Although Theorem 3.1 above shows that C120 is a universal polytope for 4-
dimensional polytopes, we note that the inclusion relation splits in two branches.
You might think that, by splitting 120 vertices of C600 suitably into 24 groups of 5
vertices each, it may be possible to obtain 24 concentric 5-cells. However, we can
show that such a procedure is impossible. Let us first quote the following theorem
(see [1]) which we need for giving a proof for our Theorem 3.2.

For a given polytope Π with v vertices P1, P2, · · ·Pv, we define the diagonal
weight of Π as the sum of the squares of the lengths of all diagonals and sides of Π,
and denote it by α(Π). Namely,

α(Π) =
∑
Pi,Pj

(d(Pi, Pj))
2,

where d(Pi, Pj) is the distance between Pi and Pj , and the sum is taken over all
possible pairs of Pi and Pj .

Then we have

Theorem A. LetR be a regular n-dimensional polytope with v vertices P1, P2, · · ·Pv

which is inscribed in a unit n-sphere. Then the diagonal weight α(R) is v2 for every
dimension n ≥ 2.

Using this theorem we obtain the following:

Theorem 3.2. The regular 5-cell C5 is not contained in the regular 600-cell C600;
namely, C5 ̸⊂ C600.

Proof.Let us compute the length of the side of C5. 5 vertices of C5 lie on its
circum-sphere of radius 4. C5 also has 10 sides, and their length d = di(1 ≤ i ≤ 10)

are all equal. Therefore, by Theorem A,
∑

i

(
di

4

)2
=

∑(
d
4

)2
= 52. Consequently,

each side has the length d = 2
√
10. On the other hand, the lengths of the diagonals

of the C600 which is inscribed in the same sphere are

2(
√
5− 1), 4, 2

√
10− 2

√
5, 4

√
2, 2(

√
5 + 1), 4

√
3, 2

√
10 + 2

√
5, 8

listed in increasing order. Since these numbers are all different from 2
√
10, we

conclude that C5 ̸⊂ C600. 2

4. Inclusion Relation among n-dimensional Polytopes for n ≥ 5 and
Non-existence of Universal Polytopes in Dimensions n ≥ 5

There are 3 kinds of regular polytopes in dimension n ≥ 5. They are n-
simplexes (denoted in the sequel by αn), n-orthoplexes (βn) and n-cubes (γn),
and they have n+ 1, 2n, 2n vertices, respectively.

Theorem 4.1. There exists no universal polytope for n-dimensional regular poly-
topes for any n ≥ 5.
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Proof. Let us determine the lengths and the number of sides and diagonals for
each of the 3 kinds of regular n-dimensional polytopes.

(A) For αn:

Let the coordinates of n among the n+ 1 vertices of the n-simplex be given
by the all permutations of (1, 0, 0, · · · , 0). By symmetry, we can write (x, x, · · · , x).
The distances between any pair of the vertices are all equal, and their value is

√
2.

Hence, we have (x−1)2+(n−1)x2 = 2, from which we conclude that x = 1±
√
1+n
n .

We choose here x = 1−
√
1+n
n . Then, we see that the radius of the circum-sphere of

our simplex must equal
√

n
n+1 . Hence, for the n-simplex whose circum-sphere has

radius 1, the length between any pair of vertices and the number of such distinct

pairs (i.e., its sides) are L1 =
√

2(n+1)
n and n1 = (n+1)n

2 , respectively.

(B) For βn:

Let the coordinates of the 2n vertices of an n-orthoplex be given by all the
permutations of (±1, 0, 0, · · · , 0). Then the radius of the circum-sphere for the n-

orthoplex is 1, and the length of a side of this orthoplex is L1 =
√
2 and the number

of sides is n1 = n(n−1)
2 , and the length of a diagonal is L2 = 2 and the number of

diagonals is n2 = n.

(C) For γn:

Let the coordinates of the 2n vertices of an n-cube be given by all the permu-
tations of (±1,±1, · · · ,±1). Then the radius of the circum-sphere of this n-cube
is

√
n. Hence for the n-cube whose circum-sphere has radius 1, the lengths of its

sides and diagonals and their numbers are given by Li = 2
√

i
n and ni =

n!
i!(n−i)!

for 1 ≤ i ≤ n.

Now in order to complete the proof, let us suppose that there exists a univer-
sal polytope in n-dimension (n ≥ 5). Then it has to be an n-cube, since n-cubes
have the largest number of vertices among regular n-polytopes. But then from
(A) ∼ (C) we conclude that there must exist positive integers k and ℓ for which√

4k
n =

√
2(n+1)

n and
√

4ℓ
n =

√
2 =

√
2n
n must hold. However, from the former

identity we get 4k = 2(n+ 1) and hence n = 2k− 1, implying that n must be odd,
while from the latter identity we get 4ℓ = 2n and hence n = 2ℓ, implying that n
must be even. Thus we get a contradiction, and therefore, we conclude that there
is no universal polytope in dimension n ≥ 5. 2

5. Concluding Remarks

We conclude from Theorem 1, Theorem 2 and Theorem 3 that only in 4-
dimension, universal polytopes exist. In this sense, 4-dimensional space exhibits a
very different characteristic from other dimensions.
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The referees pointed out that an old theorem by Hess says that every regular
star-polytope of dimension n has the same vertices as a regular convex polytope
of dimension n (see Theorem 7D6 in [3]). When applied with n = 4, Theorem
3.1 can be stated in the stronger form: The 120-cell is universal among all regular
4-polytopes, convex or starry.
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