A NOTE ON THE EXISTENCE OF A UNIVERSAL POLYTOPE AMONG REGULAR 4-POLYTOPES

JIN AKIYAMA¹, SIN HITOTUMATU², AND IKURO SATO³

¹Research Center for Math and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 Japan, ja@jin-akiyama.com

²Research Institute of Mathematical Science, University of Kyoto ³Department of Pathology, Research Institute, Miyagi Cancer Center, 47-1, Medeshima-shiote (Azanodayama), Natori-city, Miyagi 981-1293 Japan,

sato-iku510@miyagi-pho.jp

Abstract. For a polytope P, the set of all of its vertices is denoted by V(P). For polytopes P and Q of the same dimension, we write $P \subset Q$ if $V(P) \subset V(Q)$. An n-polytope (n-dimensional polytope) Q is said to be universal for a family \mathfrak{P}_n of all regular n-polytopes if $P \subset Q$ holds for every $P \in \mathfrak{P}_n$. The set \mathfrak{P}_4 consists of six regular 4-polytopes. It is stated implicitly in Coxeter [2] by applying finite discrete groups that a regular 120-cell is universal for \mathfrak{P}_4 . Our purpose of this note is to give a simpler proof by using only metric properties. Furthermore, we show that the corresponding property does not hold in any other dimension but 4.

Key words and Phrases: Inclusion property.

Abstrak. Untuk suatu politop P, himpunan semua titik-titiknya dinotasikan dengan V(P). Untuk politop P dan Q dengan dimensi sama, kita tulis $P \subset Q$ jika $V(P) \subset V(Q)$. Sebuah politop-n (politop berdimensi-n) Q dikatakan menjadi universal untuk suatu keluarga \mathfrak{P}_n dari semua politop-n regular jika $P \subset Q$ berlaku untuk setiap $P \in \mathfrak{P}_n$. Himpunan \mathfrak{P}_4 memuat 6 politop-n regular. Telah dinyatakan secara implisit di Coxeter [2] dengan menerapkan grup diskrit hingga bahwa sebuah sel-120 regular adalah universal terhadap \mathfrak{P}_4 . Pada paper ini kami akan memberi sebuah bukti yang lebih sederhana dengan hanya menggunakan sifat-sifat metrik. Lebih jauh kami menunjukkan bahwa sifat-sifat yang terkait tidak dipenuhi, kecuali pada dimensi 4.

Kata kunci: Sifat inklusi.

²⁰⁰⁰ Mathematics Subject Classification: 52B05, 52B45 Received: 30-08-2012, revised: 13-01-2013, accepted: 17-01-2013.

⁴¹

1. INTRODUCTION

For a polytope P, let us call the set of all of its vertices the *vertex set* of P and denote it by V(P). In this paper we investigate the problem of deciding whether a chosen proper subset of the vertex set of a given polytope is the vertex set of some other polytope or not.

Definition 1.1. For polytopes P and Q of the same dimension, we say that P is contained in Q and write $P \subset Q$, if $V(P) \subset V(Q)$ holds.

Definition 1.2. We say that an n-dimensional polytope Q is a universal polytope for a family \mathfrak{P} of n-dimensional regular polytopes, if $P \subset Q$ holds for every $P \in \mathfrak{P}$.

It is well known (see [2]) that there are 5 kinds of regular polytopes in dimension 3, 6 kinds in dimension 4 and 3 kinds in dimension $n \ge 5$. We investigate the question whether there exists a universal regular polytope or not in each dimension. We take up the case of dimension 3 in Section 2, of dimension 4 in Section 3 and of dimension $n \ge 5$ in Section 5, and obtain results on the inclusion relation among regular polytopes, and in particular, on the existence of a universal polytope in each dimension.

2. Inclusion Relation among 3-dimensional Regular Polyhedra and Non-existence of Universal Polyhedron in Dimension 3

There are 5 kinds of regular polyhedra in dimension 3: regular tetrahedra, cubes, regular octahedra, regular dodecahedra and regular icosahedra, and they have 4, 8, 6, 20, 12 vertices, respectively. As shown in figure 1(a) below, if we choose 4 points (8 points) from the vertex set, consisting of 20 points, of a regular dodecahedron suitably, then we get the vertex set of a regular tetrahedron (a cube, respectively).

However, the situation is different for the case of regular octahedra and of regular icosahedra. Namely, it is well-known that no subset of the vertex set of a regular dodecahedron can be the vertex set of a regular octahedron or of a regular icosahedron. Since a regular dodecahedron has the most number of vertices among the 3-dimensional regular polyhedra, a universal polyhedron, if it exists in 3-dimension, must be a regular dodecahedron. Thus we conclude that there is no universal polyhedron among 3-dimensional polyhedra. (However, as indicated in figure 1(b) below, it is well-known that the vertex set of a regular octahedron or a regular icosahedron can be obtained from a cube or a dodecahedron by choosing the centroid from suitably chosen faces of a cube or a dodecahedron.)

Universal Polytope among Regular 4-Polytopes

FIGURE 1. Inclusion relation among regular polyhedra

3. Inclusion Relation among 4-dimensional Regular Polytopes and Existence of Universal Polytopes in Dimension 4

There are 6 types of 4-dimensional regular polytopes. They are regular 5-cell (denoted by C_5 , in the sequel), regular 8-cell (C_8), regular 16-cell (C_{16}), regular 24-cell (C_{24}), regular 120-cell (C_{120}) and regular 600-cell (C_{600}). They have the vertex sets consisting of 5, 16, 8, 24, 600, 120 vertices, respectively. The following theorem describes the inclusion relationship among these 6 types.

Theorem 3.1. The regular 120-cell is a universal polytope for 4-dimensional regular polytopes. More precisely, the following inclusion relations hold:

(*i*) $C_{16} \subset C_8 \subset C_{24} \subset C_{600} \subset C_{120}$ (*ii*) $C_5 \subset C_{120}$

PROOF. The book by Coxeter [2] lists in pages 156 ~ 158 the coordinates of all the vertices for each of the 6 kinds of 4-dimensional regular polytopes. However, Coxeter uses different coordinate systems for describing coordinates for polytopes in classes C_{24} and C_{120} , and for those in classes C_5 , C_{16} , C_8 , C_{600} . Let us call the former α -system and the latter β -system. In order to establish the inclusion relation we seek, let us transform α -system to β -system.

For this purpose, let us denote by \mathfrak{P} the set of 24 points consisting of all possible permutations of the 4 points $(\pm 2, \pm 2, 0, 0)$, (here and below, all possible combinations of the signs are allowed) chosen from the vertex set of C_{120} . Let us also denote by \mathfrak{Q} the set of 24 points, 16 of which are $(\pm 2, \pm 2, \pm 2, \pm 2)$ obtained by doubling the coordinates in β -system of the vertices of C_8 and, 8 others are all possible permutations of $(\pm 4, 0, 0, 0)$, which are obtained by doubling the coordinates in β -system of the vertices of C_{16} . It is then enough to find a 4 × 4 matrix R which gives a linear transformation mapping 4 pairwise orthogonal points $P_1(2,2,0,0), P_2(2,-2,0,0), P_3(0,0,2,2), P_4(0,0,2,-2)$ in \mathfrak{P} onto 4 pairwise orthogonal points $Q_1(4,0,0,0), Q_2(0,4,0,0), Q_3(0,0,4,0), Q_4(0,0,0,4)$ in \mathfrak{Q} , respectively. For example,

$$R = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

gives such a linear transformation. This is an orthogonal transformation followed by multiplication by $\sqrt{2}$.

According to Coxeter's book, the coordinates in α -system of the 600 vertices of C_{120} are given as follows (we denote by τ the golden ratio $\frac{1+\sqrt{5}}{2}$):

All possible permutations of $(\pm 2, \pm 2, 0, 0)$, $(\pm \sqrt{5}, \pm 1, \pm 1, \pm 1)$, $(\pm \tau, \pm \tau, \pm \tau, \pm \frac{1}{\tau^2})$, $(\pm \tau^2, \pm \frac{1}{\tau}, \pm \frac{1}{\tau}, \pm \frac{1}{\tau})$, and all possible even permutations of $(\pm \tau^2, \frac{1}{\tau^2}, \pm 1, 0)$,

 $(\pm\sqrt{5},\pm\frac{1}{\tau},\pm\tau,0), \ (\pm\tau,\pm1,\pm\tau,\pm\frac{1}{\tau}).$ If we transform these points by the linear transformation given by R, we get the following disjoint sets of points (we denote below by σ the number $\frac{3\sqrt{5}+1}{2}$ and by σ' the number $\frac{3\sqrt{5}-1}{2}$):

- A : The set of 16 points consisting of $(\pm 2, \pm 2, \pm 2, \pm 2)$
- B : The set of 8 points consisting of all possible permutations of $(\pm 4, 0, 0, 0)$
- C : The set of 192 points consisting of all possible permutations of $(\pm 2\tau, \pm 2, \pm \frac{2}{\tau}, 0)$
- D : The set of 256 points obtained by putting an even number of minus signs to coordinates of each point in the set of all permutations of the numbers $(\sqrt{5}, \sqrt{5}, \sqrt{5}, 1), (\tau^2, \tau^2, \frac{\sqrt{5}}{\tau}, \frac{1}{\tau}), (\sigma, \frac{1}{\tau}, \frac{1}{\tau}, \frac{1}{\tau}), (\sqrt{5}\tau, \tau, \frac{1}{\tau^2}, \frac{1}{\tau^2})$ E : The set of 128 points obtained by putting an odd number of minus signs
- E : The set of 128 points obtained by putting an odd number of minus signs to coordinates of each point in the set of all permutations of the numbers $(\sigma', \tau, \tau, \tau), (3, \sqrt{5}, 1, 1)$

Now, using β -system of coordinates, we can compute distances between pairs of points, dihedral angles and dichoral angles, and can obtain the following results.

- (1) : $V(C_5)$ is the set of 5 points consisting of all possible permutations of the point $(-\sigma\prime, \tau, \tau, \tau)$ belonging to the set E and the point (-2, -2, -2, -2) belonging to the set A
- $(2) : V(C_8) = A$
- $(3) : V(C_{16}) = B$
- $(4) : V(C_{24}) = A \cup B$
- $(5) : V(C_{120}) = A \cup B \cup C \cup D \cup E$
- (6) : $V(C_{600}) = A \cup B \cup C'$, where C' is a subset of C consisting of 96 points obtained by applying all possible even permutations to $(\pm 2\tau, \pm 2, \pm \frac{2}{\tau}, 0)$.

From (1) ~ (6) we see that the vertex sets of $C_5, C_8, C_{16}, C_{24}, C_{600}$ are all proper subsets of the vertex set of C_{120} , and therefore, we conclude that C_{120} is a universal polytope for 4-dimensional regular polytopes. \Box

Although Theorem 3.1 above shows that C_{120} is a universal polytope for 4dimensional polytopes, we note that the inclusion relation splits in two branches. You might think that, by splitting 120 vertices of C_{600} suitably into 24 groups of 5 vertices each, it may be possible to obtain 24 concentric 5-cells. However, we can show that such a procedure is impossible. Let us first quote the following theorem (see [1]) which we need for giving a proof for our Theorem 3.2.

For a given polytope Π with v vertices $P_1, P_2, \cdots P_v$, we define the *diagonal* weight of Π as the sum of the squares of the lengths of all diagonals and sides of Π , and denote it by $\alpha(\Pi)$. Namely,

$$\alpha(\Pi) = \sum_{P_i, P_j} (d(P_i, P_j))^2,$$

where $d(P_i, P_j)$ is the distance between P_i and P_j , and the sum is taken over all possible pairs of P_i and P_j .

Then we have

Theorem A. Let R be a regular n-dimensional polytope with v vertices $P_1, P_2, \cdots P_v$ which is inscribed in a unit n-sphere. Then the diagonal weight $\alpha(R)$ is v^2 for every dimension $n \ge 2$.

Using this theorem we obtain the following:

Theorem 3.2. The regular 5-cell C_5 is not contained in the regular 600-cell C_{600} ; namely, $C_5 \not\subset C_{600}$.

PROOF.Let us compute the length of the side of C_5 . 5 vertices of C_5 lie on its circum-sphere of radius 4. C_5 also has 10 sides, and their length $d = d_i(1 \le i \le 10)$ are all equal. Therefore, by Theorem A, $\sum_i \left(\frac{d_i}{4}\right)^2 = \sum_i \left(\frac{d}{4}\right)^2 = 5^2$. Consequently, each side has the length $d = 2\sqrt{10}$. On the other hand, the lengths of the diagonals of the C_{600} which is inscribed in the same sphere are

$$2(\sqrt{5}-1), 4, 2\sqrt{10-2\sqrt{5}}, 4\sqrt{2}, 2(\sqrt{5}+1), 4\sqrt{3}, 2\sqrt{10+2\sqrt{5}}, 8$$

listed in increasing order. Since these numbers are all different from $2\sqrt{10}$, we conclude that $C_5 \not\subset C_{600}$. \Box

4. Inclusion Relation among *n*-dimensional Polytopes for $n \ge 5$ and Non-existence of Universal Polytopes in Dimensions $n \ge 5$

There are 3 kinds of regular polytopes in dimension $n \ge 5$. They are *n*-simplexes (denoted in the sequel by α_n), *n*-orthoplexes (β_n) and *n*-cubes (γ_n), and they have n + 1, 2n, 2^n vertices, respectively.

Theorem 4.1. There exists no universal polytope for n-dimensional regular polytopes for any $n \ge 5$.

PROOF. Let us determine the lengths and the number of sides and diagonals for each of the 3 kinds of regular n-dimensional polytopes.

(A) For α_n :

Let the coordinates of n among the n + 1 vertices of the n-simplex be given by the all permutations of $(1, 0, 0, \dots, 0)$. By symmetry, we can write (x, x, \dots, x) . The distances between any pair of the vertices are all equal, and their value is $\sqrt{2}$. Hence, we have $(x-1)^2 + (n-1)x^2 = 2$, from which we conclude that $x = \frac{1\pm\sqrt{1+n}}{n}$. We choose here $x = \frac{1-\sqrt{1+n}}{n}$. Then, we see that the radius of the circum-sphere of our simplex must equal $\sqrt{\frac{n}{n+1}}$. Hence, for the *n*-simplex whose circum-sphere has radius 1, the length between any pair of vertices and the number of such distinct pairs (i.e., its sides) are $L_1 = \sqrt{\frac{2(n+1)}{n}}$ and $n_1 = \frac{(n+1)n}{2}$, respectively.

(B) For β_n :

Let the coordinates of the 2n vertices of an *n*-orthoplex be given by all the permutations of $(\pm 1, 0, 0, \dots, 0)$. Then the radius of the circum-sphere for the *n*-orthoplex is 1, and the length of a side of this orthoplex is $L_1 = \sqrt{2}$ and the number of sides is $n_1 = \frac{n(n-1)}{2}$, and the length of a diagonal is $L_2 = 2$ and the number of diagonals is $n_2 = n$.

(C) For γ_n :

Let the coordinates of the 2^n vertices of an *n*-cube be given by all the permutations of $(\pm 1, \pm 1, \dots, \pm 1)$. Then the radius of the circum-sphere of this *n*-cube is \sqrt{n} . Hence for the *n*-cube whose circum-sphere has radius 1, the lengths of its sides and diagonals and their numbers are given by $L_i = 2\sqrt{\frac{i}{n}}$ and $n_i = \frac{n!}{i!(n-i)!}$ for $1 \le i \le n$.

Now in order to complete the proof, let us suppose that there exists a universal polytope in *n*-dimension $(n \ge 5)$. Then it has to be an *n*-cube, since *n*-cubes have the largest number of vertices among regular *n*-polytopes. But then from $(A) \sim (C)$ we conclude that there must exist positive integers k and ℓ for which $\sqrt{\frac{4k}{n}} = \sqrt{\frac{2(n+1)}{n}}$ and $\sqrt{\frac{4\ell}{n}} = \sqrt{2} = \sqrt{\frac{2n}{n}}$ must hold. However, from the former identity we get 4k = 2(n+1) and hence n = 2k - 1, implying that n must be odd, while from the latter identity we get $4\ell = 2n$ and hence $n = 2\ell$, implying that n must be even. Thus we get a contradiction, and therefore, we conclude that there is no universal polytope in dimension $n \ge 5$. \Box

5. Concluding Remarks

We conclude from Theorem 1, Theorem 2 and Theorem 3 that only in 4dimension, universal polytopes exist. In this sense, 4-dimensional space exhibits a very different characteristic from other dimensions.

Universal Polytope among Regular 4-Polytopes

The referees pointed out that an old theorem by Hess says that every regular star-polytope of dimension n has the same vertices as a regular convex polytope of dimension n (see Theorem 7D6 in [3]). When applied with n = 4, Theorem 3.1 can be stated in the stronger form: The 120-cell is universal among all regular 4-polytopes, convex or starry.

Acknowledgement. We thank the anonymous referee and Edy Baskoro for suggesting us invaluable comments to make the paper stronger.

References

- [1] Akiyama, J., and Sato, I., "On the Diagonal Weights of Inscribed Polytopes", to appear in *Elemente der Mathematik*.
- [2] Coxeter, H.S.M., Regular Polytopes, Dover Publications, 1973.
- [3] McMullen, P., and Schulte E., Abstract Regular Polytopes, Cambridge Univ. Press, 2002.