A NOTE ON THE EXISTENCE OF A UNIVERSAL POLYTOPE AMONG REGULAR 4-POLYTOPES

Jin Akiyama ${ }^{1}$, Sin Hitotumatu ${ }^{2}$, and Ikuro Sato ${ }^{3}$
${ }^{1}$ Research Center for Math and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 Japan, ja@jin-akiyama.com
${ }^{2}$ Research Institute of Mathematical Science, University of Kyoto
${ }^{3}$ Department of Pathology, Research Institute, Miyagi Cancer Center, 47-1, Medeshima-shiote (Azanodayama), Natori-city, Miyagi 981-1293 Japan, sato-iku510@miyagi-pho.jp

Abstract

For a polytope P, the set of all of its vertices is denoted by $V(P)$. For polytopes P and Q of the same dimension, we write $P \subset Q$ if $V(P) \subset V(Q)$. An n-polytope (n-dimensional polytope) Q is said to be universal for a family \mathfrak{P}_{n} of all regular n-polytopes if $P \subset Q$ holds for every $P \in \mathfrak{P}_{n}$. The set \mathfrak{P}_{4} consists of six regular 4-polytopes. It is stated implicitly in Coxeter (1973) by applying finite discrete groups that a regular 120 -cell is universal for \mathfrak{P}_{4}. Our purpose of this note is to give a simpler proof by using only metric properties. Furthermore, we show that the corresponding property does not hold in any other dimension but 4 .

Key words and Phrases: Inclusion property.

