A NOTE ON THE EXISTENCE OF A UNIVERSAL POLYTOPE AMONG REGULAR 4-POLYTOPES

JIN AKIYAMA¹, SIN HITOTUMATU², AND IKURO SATO³

¹Research Center for Math and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 Japan, ja@jin-akiyama.com

²Research Institute of Mathematical Science, University of Kyoto ³Department of Pathology, Research Institute, Miyagi Cancer Center, 47-1, Medeshima-shiote (Azanodayama), Natori-city, Miyagi 981-1293 Japan, sato-iku510@miyagi-pho.jp

Abstract. For a polytope P, the set of all of its vertices is denoted by V(P). For polytopes P and Q of the same dimension, we write $P \subset Q$ if $V(P) \subset V(Q)$. An n-polytope (n-dimensional polytope) Q is said to be universal for a family \mathfrak{P}_n of all regular n-polytopes if $P \subset Q$ holds for every $P \in \mathfrak{P}_n$. The set \mathfrak{P}_4 consists of six regular 4-polytopes. It is stated implicitly in Coxeter (1973) by applying finite discrete groups that a regular 120-cell is universal for \mathfrak{P}_4 . Our purpose of this note is to give a simpler proof by using only metric properties. Furthermore, we show that the corresponding property does not hold in any other dimension but 4.

Key words and Phrases: Inclusion property.

²⁰⁰⁰ Mathematics Subject Classification: 52B05, 52B45 Received: 30-08-2012, revised: 13-01-2013, accepted: 17-01-2013.