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Abstract. A functional central limit theorem for a sequence of partial sums pro-

cesses of the least squares residuals of a spatial linear regression model in which the

observations are sampled according to a probability measure is established. Under

mild assumptions to the model, the limit of the sequence of the least squares resid-

ual partial sums processes is explicitly derived. It is shown that the limit process

which is a function of the Brownian sheet depends on the regression functions and

the probability measure under which the design is constructed. Several examples of

the limit processes when the model is true are presented. Lower and upper bounds

for boundary crossing probabilities of signal plus noise models when the noises come

from the residual partial sums processes are also investigated.

Key words and Phrases: Least squares residuals, partial sums process, spatial linear
regression model, standard Brownian sheet, Riemann-Stieltjes integral.

Abstrak. Sebuah teorema limit pusat fungsional untuk barisan proses jumlah par-

sial dari sisaan kuadrat terkecil suatu model regresi linear spasial yang pengamatan-

nya dilakukan berdasarkan suatu fungsi peluang telah ditemukan. Berdasarkan

asumsi-asumsi yang tidak kuat terhadap model, limit barisan proses jumlah parsial

dari sisaan kuadrat terkecil dimunculkan secara jelas. Proses limit yang diperoleh

yang merupakan fungsi dari lembaran Brown bergantung pada fungsi-fungsi regresi

dan fungsi peluang yang digunakan dalam mengonstruksikan rancangan percobaan-

nya. Beberapa contoh proses limit untuk model yang diasumsikan benar disajikan.

Batas bawah dan atas dari peluang-peluang melewati perbatasan dari model sinyal

ditambah pengganggu juga diselidiki untuk kasus dimana pengganggu berupa proses

jumlah parsial dari sisaan kuadrat terkecil

.

Kata kunci: Sisaan kuadrat terkecil, proses jumlah parsial, model regresi linear
spasial, lembaran Brown standar, integral Riemann-Stieltjes.
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1. Introduction

In the literatures of model-check and boundary detection problems for spatial
linear regression models, the partial sums of the least squares residuals are com-
monly investigated. To test whether the assumed model holds true, Kolmogorov
(-Smirnov) and Cramér-von Mises functionals of the partial sums process of the
residuals are defined and their limiting distribution are studied. MacNeill [14, 15]
and Xie [22] derived the limit of such a process to detect the existence of a boun-
dary on the experimental region. In Bischoff and Somayasa [6] the limit process
was established by applying the geometrical approach proposed by Bischoff [5] [see
also Somayasa [19]].

It is worth noting that in the literatures just mentioned the limit of the
sequence of the partial sums processes of the residuals were obtained under an
equidistance experimental design or a so-called regular lattice only. However, in
practice for economic, technical or ecological reasons it is possible that the statis-
tician cannot or will not sample equidistantly. For change-point problems it is
sometimes not optimal to sample equidistantly, see e.g. Bischoff, and Miller [4]. By
those practical reasons it is urgent to extend the results given in [14], [15], and [6]
to those under a more general experimental design rather than a regular lattice.

To explain the problem in more detail let us consider an experiment conducted
on an experimental region given by a closed rectangle E := [a, b] × [c, d] ⊂ R2,
a < b, and c < d. Let Ξn := {(tnℓ, sℓk) ∈ E : 1 ≤ k, ℓ ≤ n}, n ≥ 1 be the n × n
experimental conditions. Throughout this paper for any function h : E 7→ R let
h(Ξn) := (h(tnℓ, sℓk))

n,n
k=1,ℓ=1 be an n × n-dimensional matrix whose entry in the

k-th row and ℓ-th column is given by h(tnℓ, sℓk). Correspondingly suppose we have
a linear model

Yn×n =

p∑
i=1

βifi(Ξn) +En×n, (1)

where Yn×n := (Yℓk)
n,n
k=1,ℓ=1 is the n×n-dimensional matrix of observations, Yℓk is

the observation in (tnℓ, sℓk), En×n := (εℓk)
n,n
k=1,ℓ=1 is the n×n-dimensional matrix of

random errors having independent and identically distributed entries with E(εℓk) =
0 and V ar(εℓk) = σ2 <∞, fi : E 7→ R is a known regression function, and βi is an
unknown constant, 1 ≤ i ≤ p.

Let Wn := [f1(Ξn), . . . , fp(Ξn)] be a linear subspace of the space of n × n-
dimensional real matrices Rn×n generated by f1(Ξn), . . . , fp(Ξn). The matrix of
least squares residuals of (1) is given by

R̂n×n := (rℓk)
n,n
k=1,ℓ=1 = prW⊥

n
Yn×n = prW⊥

n
En×n (2)

(cf. Seber and Lee [18], p. 38, and Arnold [1], p. 62), where prWn and prW⊥
n
:=

id − prWn stand for the orthogonal projectors onto Wn and onto the orthogonal
complement of Wn, respectively.

MacNeill and Jandhyala [14] and Bischoff and Somayasa [6] embedded the

sequence of the matrix of residuals R̂n×n into a sequence of stochastic processes
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Tn(R̂n×n)(t, s) : (t, s) ∈ I := [0, 1]× [0, 1], n ≥ 1

}
which is further called the se-

quence of the least squares residual partial sums processes of Model (1), where for
any An×n := (aℓk)

n,n
k=1,ℓ=1 ∈ Rn×n and (t, s) ∈ I,

Tn(An×n)(t, s) :=

[ns]∑
k=1

[nt]∑
ℓ=1

aℓk + (nt− [nt])

[ns]∑
k=1

a[nt]+1,k

+ (ns− [ns])

[nt]∑
ℓ=1

aℓ,[ns]+1 + (nt− [nt])(ns− [ns])a[nt]+1,[ns]+1,

thereby for x ∈ R, [x] := max{n ∈ N : n ≤ x}, and Tn(An×n)(t, s) = 0, for
t = 0 or s = 0. By the definition these processes have sample paths in C(I), where
C(I) is the space of continuous functions on I. As usual C(I) is endowed with the
uniform topology. Throughout we will use the acronym, LSRPS, as shorthand for
least squares residual partial sums.

Under the condition that E = I, tnℓ =
ℓ
n , sℓk = k

n , 1 ≤ ℓ, k ≤ n, and f1, . . . , fp
are linearly independent and continuously differentiable on I, it was shown in [14],

that 1
nσTn(R̂n×n) converges weakly in C(I) to a centered Gaussian process defined

by

B(t, s)−
∫ t

0

∫ s

0

∫ 1

0

∫ 1

0

f̃⊤(u, v)G−1f̃(u′, v′)dB(u′, v′)dudv, (t, s) ∈ I,

where B is the standard Brownian sheet on C(I), and f̃ := (f1, . . . , fp)
⊤. Note that

[6] proposed a geometrical approach due to Bischoff [5] which is different with that

proposed in [14] in obtaining the limit process of 1
nσTn(R̂n×n).

As a matter of fact, in this paper we aim to give a generalization of the
preceding result by sampling the observations according to a probability measure
instead of sampling equidistantly. We also derive the limit of the sequence of the
LSRPS processes under different assumptions given to the regression functions.

It is obvious that the sequence of the experimental conditions (Ξn)n≥1 cor-
responds uniquely to a sequence of discrete probability measures (Pn)n≥1 defined
on the measure space (E,B(E)), given by

Pn(A) :=
1

n2

n∑
ℓ=1

n∑
k=1

δ{(tnℓ,sℓk)}(A), A ∈ B(E), n ≥ 1,

where δ{(t,s)} is the Dirac measure in (t, s) ∈ E, defined by δ{(t,s)}(A) = 1, for
(t, s) ∈ A, and δ{(t,s)}(A) = 0, for (t, s) ̸∈ A. Let (Fn)n≥1 be the corresponding
sequence of the distribution functions of (Pn)n≥1, and P0 be a probability measure
on (E,B(E)) with the distribution function F0 on E, such that F0 = F01×F02, for
some distribution functions F01 and F02 on [a, b] and [c, d], respectively. We need
for our result

sup
(t,s)∈E

|Fn(t, s)− F0(t, s)| → 0, as n→ ∞. (3)
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The sequence (Ξn)n≥1 can be constructed in a natural way so that (3) is fulfilled.
For instance, for a fixed n ≥ 1 and 1 ≤ ℓ ≤ n, let us determine first a partition
{tn1, tn2, . . . , tnn} on the interval (a, b] based on the equation F0(tnℓ, d) =

ℓ
n . Ac-

cordingly, for a fixed ℓ ∈ {1, . . . , n} the design point (tnℓ, sℓk) ∈ E is then developed
as the solution of the equation F0(tnℓ, sℓk) =

ℓk
n2 , 1 ≤ k ≤ n, which is unique as long

as F0 is continuous and strictly increasing on E. Under this sampling scheme the ob-
tained experimental condition is not a regular lattice, unless P0 is the uniform prob-
ability measure on (E,B(E)). For 1 ≤ ℓ ≤ n, the second component of the design
pints (tnℓ, sℓk) does not depend anymore on ℓ. Therefore for a fixed k and 1 ≤ ℓ ≤ n,
sℓk will be denoted by snk, 1 ≤ k ≤ n. It can be shown that under this sampling
procedure the sequence (Fn)n≥1 satisfies (3). To see this, let us consider the fam-
ily of closed rectangles {[tnℓ−1, tnℓ]× [snk−1, snk] : 1 ≤ ℓ, k ≤ n}, where tn0 := a,
and sn0 := c, and let (t, s) ∈ E be arbitrary. Then by construction there exist
ℓ and k, 1 ≤ ℓ, k ≤ n, such that (t, s) ∈ [tnℓ−1, tnℓ] × [snk−1, snk], and it holds

|Fn(t, s)− F0(t, s)| ≤ |Fn(tnℓ−1, snk−1)− F0(tnℓ, snk)| =
∣∣∣ (ℓ−1)(k−1)

n2 − ℓk
n2

∣∣∣ ≤ 2/n.

In this paper we assume that F0 is continuous and strictly increasing on E and sat-
isfies F0 = F01 ×F02, for some marginal distribution functions F01 and F02 defined
on [a, b] and [c, d], respectively.

It is worth mentioning that for the case of linear regression models with an
experimental region given by a closed interval [a, b], a < b, Bischoff [3, 4] gener-
alized the results of MacNeill [12, 13] under Assumption (3) by proposing a sam-
pling scheme according to the quantile function of a given probability measure on
([a, b],B([a, b])). Their results can not be straightforwardly extended however to the
spatial context, since the quantile function of a probability measure on (E,B(E))
is not uniquely determined. For this reason we need more effort in deriving the
limit of the sequence of the LSRPS processes when the consideration is extended
to the spatial observations.

The rest of this paper discusses the limit process of the sequence of the
spatial LSRPS processes under Assumption (3) when the model is true, see Section
2. There we also present examples of the limit process associated with polynomial
models. Lower and upper bounds of boundary crossing probabilities involving signal
plus noise models when the involved noise is the limit of the sequence of spatial
LSRPS processes are presented at the end of Section 2.

2. Limit Process

Let us consider Model (1) with the experimental region E and experimental
design Ξn. We suppose that (3) is fulfilled. Let Xn2 be the n2 × p-dimensional
design matrix whose j-th column is given by vec(fj(Ξn)), 1 ≤ j ≤ p, where ”vec”
is the well known vec operator defined e.g. in Harville [9], p.340-344. The entry in
the i-th row and j-th column of Xn2 is nothing but fj(tnℓ, sℓk), for 1 ≤ ℓ, k ≤ n
that satisfies the relation (ℓ − 1)n + k = i. Since Pn converges weakly to P0, it
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holds by the convergence componentwise that

1

n2
X⊤

n2Xn2 =

(∫
E

fi(x, y)fj(x, y)Pn(dx, dy)

)p,p

i=1,j=1

→ G, as n→ ∞,

provided f1, . . . , fp are continuous on E, see e.g. Theorem 2.1 (Portmanteau The-
orem) in [2], where G is a p × p-dimensional matrix whose entry in the i-th row
and j-th column is given by

∫
E
fi(x, y)fj(x, y)P0(dx, dy), 1 ≤ i, j ≤ p. Note that if

f1, . . . , fp are linearly independent as functions in L2(P0, E), then G is invertible,
where L2(P0, E) is the space of squared integrable function on E with respect to
P0. The well known continuous mapping theorem further implies(

1

n2
X⊤

n2Xn2

)−1

→ G−1, as n→ ∞. (4)

Hence for large enough n ∈ N, the projection matrix Xn2(X⊤
n2Xn2)−1X⊤

n2 exists by

the reason vec(f1(Ξn)), . . . , vec(fp(Ξn)) are linearly independent in Rn2

for large
enough n ∈ N.

Theorem 2.1. (Invariance Principle). Let (En×n)n≥1, En×n = (εℓk)
n,n
k=1,ℓ=1 be a

sequence of n× n dimensional random matrices such that εℓk are independent and
identically distributed random variables with E(εℓk) = 0 and V ar(εℓk) = σ2 < ∞.
Then

1

nσ
Sn(En×n)

D−→ BF0 in C(E), as n→ ∞,

where Sn : Rn×n 7→ C(E) is a linear operator on Rn×n defined by

Sn(An×n)(x, y) := Tn(An×n)(F01(x), F02(y)), An×n ∈ Rn×n,

and BF0 is the Brownian sheet on C(E), such that

BF0(x, y) := B(F01(x), F02(y)), for (x, y) ∈ E,

i.e., BF0 is a centered Gaussian process whose covariance function is given by

Cov(BF0(x, y), BF0(x
′, y′)) = F0(x ∧ x′, y ∧ y′),

for (x, y), (x′, y′) ∈ E. Here and throughout this paper a ∧ b means the minimum
between a and b, for any real numbers a and b.

Proof. The first assertion is a direct consequence of the well known continuous
mapping theorem, (see e.g. [2], p. 20-22) and the result of Park [17]. The sec-
ond assertion follows from the definition of the covariance function of the standard
Brownian sheet (cf. [10], [23], and [17]) and by the monotonicity of F01 and F02. 2

Theorem 2.2. Let f1, . . . , fp be linearly independent as functions in C(E)∩BVH(E),
where BVH(E) is the space of functions that have bounded variations in the sense
of Hardy on E. If Assumption (3) is fulfilled, then for n→ ∞,

1

nσ
Sn(R̂n×n)

D−→ Bf̃ ,F0
in C(E),
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where for (x, y) ∈ E,

Bf̃ ,F0
(x, y) := BF0(x, y)−

∫
[a,x]×[c,y]

f̃⊤(u, v)P0(du, dv)G
−1B∗

F0,f̃
,

with f̃ := (f1, . . . , fp)
⊤, and

B∗
F0,f̃

:= ∆E(BF0 f̃)−
∫ (R)

[a,b]

BF0(t, d)df̃(t, d)−
∫ (R)

[c,d]

BF0(b, s)df̃(b, s)

+

∫ (R)

[a,b]

BF0(t, c)df̃(t, c) +

∫ (R)

[c,d]

BF0(a, s)df̃(a, s)

+

∫ (R)

E

BF0(t, s)df̃(t, s).

Thereby ∆[a1,b1]×[c1,d1]ψ := ψ(b1, d1)−ψ(b1, c1)−ψ(a1, d1)+ψ(a1, c1), and ∆∅ψ :=
0, for any rectangle [a1, b1] × [c1, d1] ⊆ E, and any real-valued function ψ on E.
We refer the reader to Clarkson and Adams [8] for the definition of BVH(E).

Proof. Since Sn is linear on Rn×n, by Equation (2) we have for any (x, y) ∈ E,

1

nσ
Sn(R̂n×n)(x, y) =

1

nσ
Sn(En×n)(x, y)−

1

nσ
Sn(prWnEn×n)(x, y).

Let 1[nF01(x)][nF02(y)] be an n2-dimensional vector that has 1’s for elements where
Ξn has its component (tnℓ, sℓk) with ℓ ≤ [nF01(x)] and k ≤ [nF02(y)], whereas the
remainder is zero. Then by the definition of Tn, we have

1

nσ
Sn(prWnEn×n)(x, y)

=

(
1

n2
1⊤
[nF01(x)][nF02(y)]

Xn2 + o(1)

)(
1

n2
X⊤

n2Xn2

)−1
1

nσ
X⊤

n2vec(En×n)

=

 1

n2

[nF01(x)]∑
ℓ=1

[nF02(y)]∑
k=1

f̃⊤(tnℓ, sℓk) + o(1)

( 1

n2
X⊤

n2Xn2

)−1
1

nσ
X⊤

n2vec(En×n)

=

(∫
[a,x]×[c,y]

f̃⊤(u, v)Pn(du, dv) + o(1)

)(
1

n2
X⊤

n2Xn2

)−1
1

nσ
X⊤

n2vec(En×n),

where o(1) is the collection of terms that goes to zero as n → ∞. By Assumption
(3), we further get the following componentwise convergence∫

[a,x]×[c,y]

f̃⊤(u, v)Pn(du, dv) →
∫
[a,x]×[c,y]

f̃(u, v)P0(du, dv), as n→ ∞.

The term 1
nσX

⊤
n2vec(En×n) is equal to 1

nσ

∑n
ℓ=1

∑n
k=1 f̃(tnℓ, sℓk)εℓk which is the

sequence of the partial sums of the sequence of independent random vectors{
1

nσ
f̃(tnℓ, sℓk)εℓk, 1 ≤ ℓ, k ≤ n

}
, n ≥ 1, (5)
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with E( 1
nσ f̃(tnℓ, sℓk)εℓk) = 0 ∈ Rp, and

Cov

(
1

nσ
f̃(tnℓ, sℓk)εℓk

)
=

(
1

n2

n∑
ℓ=1

n∑
k=1

fi(tnℓ, sℓk)fj(tnℓ, sℓk)

)p,p

i=1,j=1

,

which converges componentwise to G, as n→ ∞. Furthermore, for every ε > 0, it
holds

n∑
ℓ=1

n∑
k=1

E

{∥∥∥∥ 1

nσ
f̃(tnℓ, sℓk)εℓk

∥∥∥∥2 1{∥ 1
nσ f̃(tnℓ,sℓk)εℓk∥>ε}

}

≤ C

σ2
E
{
ε2111

{
ε211>

(εnσ)2

C

}}→ 0, as n→ ∞,

where C :=
∑p

i=1 ∥fi∥
2
∞ <∞ and 1A is the indicator of the set A. This shows that

the Lindeberg condition is satisfied by Sequence (5). Hence, by the multivariate
Lindeberg-Feller central limit theorem (cf. Van der Vaart [21], p. 20), we have

1

nσ

n∑
ℓ=1

n∑
k=1

f̃(tnℓ, sℓk)εℓk
D−→ Np(0,G), as n→ ∞,

where Np stands for the p-variate normal distribution. Let us consider the ran-
dom vector B∗

F0,f̃
defined above. It is obvious that the Riemann-Stieltjes inte-

grals involved therein are well defined by the fact BF0 has the sample paths in
C(E), whereas f1, . . . , fp are assumed to be in BVH(E) [see also Lemma 2 in
Móricz [16] or Theorem 2 in Yeh [23]]. Furthermore, by the integration by parts
for the Riemann-Stieltjes integral on E (cf. Young [24]), it can be shown that

B∗
F0,f̃

coincides with
∫ (R)

E
f̃(u, v)dBF0(u, v) which is clearly p-variate normally dis-

tributed with mean 0 and covariance matrix given by the Lebesgue-Stieltjes integral∫
E
f̃(u, v)f̃⊤F0(du, dv) = G. Thus, it can be concluded that

1

nσ
X⊤

n2vec(En×n)
D−→ B∗

F0,f̃
=

∫ (R)

E

f̃(u, v)dBF0(u, v), as n→ ∞,

by the fact a p-variate normal distribution is uniquely determined by its mean vec-
tor and its covariance matrix. Finally by applying (4) and Theorem 2.1 the proof
of the theorem is complete. 2

Lemma 2.3. The covariance function of Bf̃ ,F0
is given by

KB
f̃,F0

((x, y), (x′, y′)) :=Cov
(
Bf̃ ,F0

(x, y), Bf̃ ,F0
(x′, y′)

)
=F0(x ∧ x′, y ∧ y′)− a⊤

f̃
(x, y)G−1af̃ (x

′, y′),

for (x, y), (x′, y′) ∈ E, where af̃ : E 7→ Rp, (t, s) 7→
∫
[a,t]×[c,s]

f̃(u, v)P0(du, dv).
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Proof.

Cov
(
Bf̃ ,F0

(x, y), Bf̃ ,F0
(x′, y′)

)
= Cov (BF0

(x, y), BF0
(x′, y′))

− Cov

(
BF0(x, y),

∫
[a,x′]×[c,y′]

f̃⊤ dP0G
−1B∗

F0,f̃

)

− Cov

(∫
[a,x]×[c,y]

f̃⊤ dP0G
−1B∗

F0,f̃
, BF0(x

′, y′)

)

+ Cov

(∫
[a,x]×[c,y]

f̃⊤ dP0G
−1B∗

F0,f̃
,

∫
[a,x′]×[c,y′]

f̃⊤ dP0G
−1B∗

F0,f̃

)
.

Let Γ := {Iℓk := [xℓ−1, xℓ] × [yk−1, yk] : 1 ≤ ℓ, k ≤ n} be a non-overlapping,
finite exact cover of E. This is a simple generalization of the notion of finite exact
cover discussed in Stroock [20], p.5. Then by the definition of the Riemann-Stieltjes
integral on E, we have

Cov

(
BF0(x, y),

∫
[a,x′]×[c,y′]

f̃⊤ dP0G
−1B∗

F0,f̃

)

= lim
n→∞

∫
[a,x′]×[c,y′]

f̃⊤ dP0G
−1Cov

(
BF0(x, y),

n∑
ℓ=1

n∑
k=1

f̃(xℓ, yk)∆IℓkBF0

)

= lim
n→∞

∫
[a,x′]×[c,y′]

f̃⊤ dP0G
−1

n∑
ℓ=1

n∑
k=1

f̃(xℓ, yk)∆Iℓk∩[a,x]×[c,y]F0

=

∫
[a,x′]×[c,y′]

f̃⊤ dP0G
−1

∫
[a,x]×[c,y]

f̃ dP0.

Analogously, it holds

Cov

(∫
[a,x]×[c,y]

f̃⊤ dP0G
−1B∗

F0,f̃
, BF0(x

′, y′)

)

=

∫
[a,x]×[c,y]

f̃⊤ dP0G
−1

∫
[a,x′]×[c,y′]

f̃ dP0.

Now by applying the multivariate technique (Theorem 1.3 in [18]), we get

Cov

(∫
[a,x]×[c,y]

f̃⊤ dP0G
−1B∗

F0,f̃
,

∫
[a,x′]×[c,y′]

f̃⊤ dP0G
−1B∗

F0,f̃

)

=

∫
[a,x]×[c,y]

f̃⊤ dP0G
−1Cov

(
B∗

F0,f̃
, B∗

F0,f̃

)
G−1

∫
[a,x′]×[c,y′]

f̃ dP0.
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Since for such a non-overlapping finite exact cover Γ, the definition of the Riemann-
Stiletjes integral and independent increments of BF0 result in

Cov
(
B∗

F0,f̃
, B∗

F0,f̃

)
= lim

n→∞
Cov

(
n∑

ℓ=1

n∑
k=1

f̃(xℓ, yk)∆IℓkBF0 ,
n∑

ℓ=1

n∑
k=1

f̃(xℓ, yk)∆IℓkBF0

)

= lim
n→∞

n∑
ℓ=1

n∑
k=1

f̃(xℓ, yk)f̃
⊤(xℓ, yk)∆IℓkF0 = G,

the proof of the lemma is complete. 2

Remark 2.4. Without altering the convergence result we can replace σ in Theorem
2.2 by any consistent estimator of σ. One of such an estimator is provided by

σ̂n :=
√

1
n2−p

∑n
ℓ=1

∑n
k=1 r

2
ℓk [see Theorem 10.5 of Arnold [1]].

Let have a look at the following hypotheses:

H0 : Yn×n =

p∑
i=1

βifi(Ξn) +En×n versus H1 : Yn×n = g(Ξn) +En×n, (6)

for an unknown-true regression function g : E 7→ R. It is usual in practice to test
(6) by a type of Kolmogorov statistic, defined by

KSn := sup
(x,y)∈E

1

nσ
Sn(R̂n×n)(x, y),

where H0 will be rejected at level α ∈ (0, 1) if and only if KSn ≥ tn;1−α. Thereby
tn;1−α is a constant that satisfies the equation

P

{
sup

(x,y)∈E

1

nσ
Sn(R̂n×n)(x, y) ≥ tn;1−α | H0

}
= α.

If H0 is true, then under Assumption (3) it holds

KSn
D−→ sup

(x,y)∈E

Bf̃ ,F0
(x, y), for n→ ∞.

Based on this result, tn;1−α can be approximated by a number t1−α, where t1−α is

a constant that satisfies the equation P
{
sup(x,y)∈E Bf̃ ,F0

(x, y) ≥ t1−α

}
= α.

To get the power of the test, we consider under H1 a localized non parametric
model Yloc

n×n := 1
ng(Ξn) +En×n, n ≥ 1.

Corollary 2.5. Suppose f1, . . . , fp and Ξn satisfy the situation in Theorem 2.2,
and g is continuous on E. Then under the localized alternative we have

KSn
D−→ sup

(x,y)∈E

(Bf̃ ,F0
(x, y) + hg(x, y)), for n→ ∞,
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where for (x, y) ∈ E,

hg(x, y) :=
1

σ

∫
[a,x]×[c,y]

g dP0 −
1

σ

∫
[a,x]×[c,y]

f̃⊤ dP0G
−1

∫
E

f̃g dP0.

Proof. By the linearity of Sn, under the localized alternative we have

1

nσ
Sn(R̂n×n)(x, y) =

1

nσ
Sn(prW⊥

n
En×n)(x, y) +

1

nσ
Sn(prW⊥

n

1

n
g(Ξn))(x, y)

The second term in the right-hand side of the last equation is equivalent to

1

σ

∫
[a,x]×[c,y]

g dPn − 1

σ

∫
[a,x]×[c,y]

f̃⊤ dPn

(
1

n2
X⊤

n2Xn2

)−1 ∫
E

f̃g dPn,

which converges to hg(x, y), as n→ ∞. The proof is complete by Theorem 2.2 and
the continuous mapping theorem in [2], p.20-22. 2

2.1. Examples. In the following we present examples of the limit process under
H0 for various polynomial models. For computational reason we consider the ex-
perimental region I and a distribution function F0 on I defined by F0(x, y) = x2y2,
(x, y) ∈ I, having an L2(λ,E) density f0(x, y) = 4xy, on I, where λ in Lebesgue
measure on (I,B(I)).

2.1.1. Constant Model. Suppose under H0 we assume a constant model

Yn×n = β1f1(Ξn) +En×n,

where f1 : I 7→ R, f1(x, y) = 1, for (x, y) ∈ I, and β is an unknown constant. Then
we get

∫
[0,x]×[0,y]

f1 dF0 = x2y2, G−1 = (1), and B∗
F0,f1

= BF0(1, 1). The last

follows from the property that BF0(x, y) = 0 almost surely, if x = 0 or y = 0. The
limit process under H0 is then given by

Bf1,F0(x, y) = BF0(x, y)− x2y2BF0(1, 1), (x, y) ∈ I,

with the covariance function

KBf1,F0
((x, y), (x′, y′)) = (x ∧ x′)2(y ∧ y′)2 − x2x′2y2y′2,

for (x, y), (x′, y′) ∈ I.

2.1.2. First-Order Model. For the next example let us consider under H0 a first-
order polynomial model

Y (x, y) = f̃⊤(x, y)β + ε(x, y), (x, y) ∈ I,

where β = (β1, β2, β3)
⊤ ∈ R3 is a vector of unknown constants, and f̃3 := (f1, f2, f3)

⊤ :

I 7→ R3 is a vector of known regression functions, given by f̃3(x, y) = (1, x, y)⊤, for
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(x, y) ∈ I. The calculation of the integrals result in

∫
[0,x]×[0,y]

f̃3 dP0 =

(
x2y2,

2

3
x3y2,

2

3
x2y3

)⊤

G =

 1 2/3 2/3
2/3 1/2 4/9
2/3 4/9 1/2

 , G−1 =

 17 −12 −12
−12 18 0
−12 0 18


B∗

F0,f̃3
=

(
BF0(1, 1), BF0(1, 1)−

∫
[0,1]

BF0(t, 1)dt,BF0(1, 1)−
∫
[0,1]

BF0(1, s)ds

)⊤

.

Hence, we obtain the limit process under H0:

Bf̃3,F0
(x, y) = BF0(x, y)− (17x2y2 − 8x3y2 − 8x2y3)BF0(1, 1)

− 12(x3y2 − x2y2)

(
BF0(1, 1)−

∫
[0,1]

BF0(t, 1)dt

)

− 12(x2y3 − x2y2)

(
BF0(1, 1)−

∫
[0,1]

BF0(1, s)ds

)
= BF0(x, y) + (7x2y2 − 4x3y2 − 4x2y3)BF0(1, 1)

+12(x3y2 − x2y2)

∫
[0,1]

BF0(t, 1)dt+ 12(x2y3 − x2y2)

∫
[0,1]

BF0(1, s)ds.

The covariance function of this process is given by

KB
f̃3,F0

((x, y), (x′, y′)) = (x ∧ x′)2(y ∧ y′)2 − (17x2y2 − 8x3y2 − 8x2y3)x′2y′2

− 8(x3y2 − x2y2)x′3y′2 − 8(x2y3 − x2y2)x′2y′3, for (x, y), (x′, y′) ∈ I.

2.1.3. Second-Order Model. For the last example we consider a second-order poly-
nomial model

Y (t, s) = f̃⊤6 (t, s)β + ε(t, s), (t, s) ∈ I,

where f̃6 := (f1, f2, f3, f4, f5, f6)
⊤ : I 7→ R6 is the vector of known regression func-

tions, defined by f̃6(t, s) = (1, t, s, t2, ts, s2)⊤, for (t, s) ∈ I, and β := (β1, . . . , β6)
⊤ ∈
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Rp is a vector of unknown constants. Associated to this model we consequently get

∫
[0,x]×[0,y]

f̃6 dP0 =

(
x2y2,

2

3
x3y2,

2

3
x2y3,

1

2
x4y2,

4

9
x3y3,

1

2
x2y4

)⊤

,

G =


1 2/3 2/3 1/2 4/9 1/2
2/3 1/2 4/9 2/5 1/3 1/3
2/3 4/9 1/2 1/3 1/3 2/5
1/2 2/5 1/3 1/3 4/15 1/4
4/9 1/3 1/3 4/15 1/4 4/15
1/2 1/3 2/5 1/4 4/15 1/3

 ,

G−1 =


135 −216 −216 90 144 90
−216 594 144 −360 −216 0
−216 144 594 0 −216 −360
90 −360 0 300 0 0
144 −216 −216 0 324 0
90 0 −360 0 0 300

 .

By the definition of B∗
F0,f̃

, we also have

B∗
F0,f̃6

=

(
BF0

(1, 1), BF0
(1, 1)−

∫
[0,1]

BF0
(t, 1)dt,BF0

(1, 1)−
∫
[0,1]

BF0
(1, s)ds,

BF0(1, 1)− 2

∫
[0,1]

BF0(t, 1)tdt,

BF0(1, 1)−
∫
[0,1]

BF0(t, 1)dt−
∫
[0,1]

BF0(1, s)ds+

∫
I

BF0(t, s)dtds,

BF0(1, 1)− 2

∫
[0,1]

BF0(1, s)sds

)⊤

.

After some simplification in the computation, the limit process corresponding to
this model is given by

Bf̃6,F0
(x, y) = BF0(x, y)

− (27x2y2 − 36x3y2 − 36x2y3 + 15x4y2 + 16x3y3 − 120x2y4)BF0(1, 1)

+ (−72x2y2 + 252x3y2 − 48x2y3 − 180x4y2 + 48x3y3)

∫
[0,1]

BF0(t, 1)dt

+ (−72x2y2 − 48x3y2 + 252x2y3 + 48x3y3 − 180x2y4)

∫
[0,1]

BF0(1, s)ds



Residual Partial Sums Process 35

+ (180x2y2 − 480x3y2 + 300x4y2)

∫
[0,1]

BF0
(t, 1)tdt

+ (180x2y2 − 4800x2y3 + 300x2y4)

∫
[0,1]

BF0(1, s)sds

− (144x2y2 − 144x3y2 − 144x2y3 + 144x3y3)

∫
I

BF0(t, s)dtds,

with the covariance function

KB
f̃6,F0

((x, y), (x′, y′)) = (x ∧ x′)2(y ∧ y′)2

− (135x2y2 − 144x3y2 − 144x2y3 + 45x4y2 + 64x3y3 + 45x2y4)x′2y′2

− 2

3
(−216x2y2 + 396x3y2 + 96x2y3 − 180x4y2 − 96x3y3)x′3y′2

− 2

3
(−216x2y2 + 96x3y2 + 396x2y3 − 96x3y3 − 180x2y4)x′2y′3

− 1

2
(90x2y2 − 240x3y2 + 150x4y2)x′4y′2

− 4

9
(144x2y2 − 144x3y2 − 144x2y3 + 144x3y3)x′3y′3

− 1

2
(90x2y2 − 240x2y3 + 150x2y4)x′2y′4, for (x, y), (x′, y′) ∈ I.

2.2. Upper and Lower Bounds for the Localized Power. Let us consider the
boundary crossing probability

P
{
∃(t, s) ∈ E : ρφ(t, s) +Bf̃ ,F0

(t, s) ≥ u(t, s)
}
, (7)

having a known trend φ : E → R, and a general known boundary u : E → R, for
any real numbers ρ > 0. Note that in case φ = hg for a function g, such that
g(Ξn) ̸∈ Wn, n ≥ 1, and u(t, s) = t1−α, for (t, s) ∈ E, we get the power of the
size α test derived in Corollary 2.5 evaluated at g. We aim to derive the lower
and upper bounds for such a probability when the trend is restricted in the certain
subset of the reproducing kernel Hilbert space of Bf̃ ,F0

, the one defined by

HB
f̃,F0

:=
{
h : E → R : ∃f ∈ L2(P0, E), h(t, s) = ⟨f,m(t,s)⟩L2(P0,E)

}
,

where the family {m(t,s) : E → R, (t, s) ∈ E} constitutes a model for Bf̃ ,F0
(cf.

Lifshits [11], p.93), and ⟨·, ·⟩L2(P0,E) is the inner product on L2(P0, E). The function
f having the property h(t, s) = ⟨f,m(t,s)⟩L2(P0,E) is called the reproducing function
of h ∈ HB

f̃,F0
. The space HB

f̃,F0
is furnished with the inner product and the

corresponding norm defined by

⟨h1, h2⟩HB
f̃,F0

:= ⟨f1, f2⟩L2(P0,E), ∥h1∥HB
f̃,F0

:= ∥f1∥L2(P0,E) ,

for any h1, h2 ∈ HB
f̃,F0

having the reproducing functions f1, f2 ∈ L2(P0, E), re-

spectively.
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Proposition 2.6. (Cameron-Martin-Girsanov formula) Let PB
f̃,F0

be the distri-

bution of Bf̃ ,F0
on the space (C(E),BC). For any h ∈ HB

f̃,F0
, let Ph

B
f̃,F0

be a

probability measure defined on (C(E),BC), given by Ph
B

f̃,F0

(A) := PB
f̃,F0

(A − h),

for A ∈ BC, where A − h := {x − h : x ∈ A}. If f ∈ BVH(E) is the reproducing
function of h, then the density of Ph

B
f̃,F0

with respect to PB
f̃,F0

is given by

dPh
B

f̃,F0

dPB
f̃,F0

(x) = exp

{∫ (R)

E

f(t, s) dx(t, s)− 1

2
∥h∥2HB

f̃,F0

}
.

Proof. See Theorem 3 in Lifshits [11], p.88. 2

Now let us consider the case where Bf̃ ,F0
= BF0 . By the definition of the

covariance function of BF0 and by the result in Lifshits [11], p. 93, the reproducing
kernel Hilbert space of BF0 is given by

HBF0
=

{
h : E → R : ∃w ∈ L2(P0, E), h(t, s) =

∫
[a,t]×[c,s]

wdP0, (t, s) ∈ E

}
.

It is clear that for every h ∈ HBF0
, there exists uniquely an absolutely continuous

signed measure νh, say, defined on (E,B(E)) with an L2(P0, E) density with respect
to P0. Hence by Proposition 2.6, for any h ∈ HBF0

it holds

dPh
BF0

dPBF0

(x) = exp

{∫ (R)

E

dνh
dP0

(t, s) dx(t, s)− 1

2
∥h∥2HBF0

}
, (8)

provided dνh

dP0
∈ BVH(E).

Theorem 2.7. Let u be continuous on E and φ be in HBF0
. If w :=

dνφ

dP0
is non

decreasing on E and the corresponding marginal functions w(b, ·) : [c, d] → R, s 7→
w(b, s), s ∈ [c, d], and w(·, d) : [a, b] → R, t 7→ w(t, d), t ∈ [a, b] are non increasing
on [c, d] and [a, b],respectively, then

P {∀(t, s) ∈ E : ρφ(t, s) +BF0(t, s) < u(t, s)}
≤ k∗P {∀(t, s) ∈ E : BF0(t, s) < u(t, s)} ,

where

k∗ := exp

{
ρw(b, d)u(b, d) + ρ

∫ (R)

[a,b]

u(t, d)d(−w(t, d)) + ρ

∫ (R)

[c,d]

u(b, s)d(−w(b, s))

+ρ

∫ (R)

E

u(t, s)dw(t, s)− 1

2
ρ2 ∥φ∥2HBF0

}
, ρ > 0.
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Proof. By transformation of variable and Equation (8), we obtain

P {ω ∈ Ω : ∀ (t, s) ∈ E, ρφ(t, s) +BF0(ω)(t, s) < u(t, s)}

=

∫
Ω

1{ω∈Ω:∀(t,s)∈E,ρφ(t,s)+BF0
(ω)(t,s)<u(t,s)}P(dω)

=

∫
C(E)

1{y∈C(E): ∀ (t,s)∈E,y(t,s)<u(t,s)}Pρφ
BF0

(dy)

=

∫
C(E)

1{y∈C(E):∀(t,s)∈E,y(t,s)<u(t,s)}

× exp

{∫ (R)

E

ρw(t, s) dy(t, s)− 1

2
ρ2 ∥φ∥2HBF0

}
PBF0

(dy)

=

∫
Ω

1{ω∈Ω:∀ (t,s)∈E, BF0 (ω)(t,s)<u(t,s)}

× exp

{∫ (R)

E

ρw(t, s) dBF0(ω)(t, s)−
1

2
ρ2 ∥φ∥2HBF0

}
P(dω).

Since BF0(t, c) = 0 a.s. for t ∈ [a, b] and BF0(a, s) = 0 a.s. for s ∈ [c, d], then
∆EwBF0 = w(b, d)BF0(b, d) a.s. The result follows immediately from integration
by parts and the assumption that w is non decreasing on E, with −w(·, d) and
−w(b, ·) are non decreasing on [a, b] and [c, d], respectively. 2

Corollary 2.8. Under the conditions of Theorem 2.7 it holds

P{∃(t, s) ∈ E : ρφ(t, s) +BF0(t, s) ≥ u(t, s)}
≥ 1− k∗P{∀(t, s) ∈ E : BF0(t, s) < u(t, s)}
= 1− k∗ + k∗P{∃(t, s) ∈ E : BF0(t, s) ≥ u(t, s)}.

In particular, for the case u(t, s) = t1−α, (t, s) ∈ E, where P{sup(t,s)∈E BF0(t, s) ≥
t1−α} = α, we get

P

{
sup

(t,s)∈E

(ρφ(t, s) +BF0(t, s)) ≥ t1−α

}
≥ 1− k∗1P{ sup

(t,s)∈E

BF0(t, s) < t1−α} = 1− k∗1(1− α), ρ > 0,

where

k∗1 := exp{ρt1−αw(b, d)− ρt1−α∆[a,b]w(·, d)− ρt1−α∆[a,b]w(b, ·)

+ ρt1−α∆Ew(·)−
1

2
ρ2 ∥φ∥2HBF0

}.
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Corollary 2.9. Suppose φ and u satisfy the conditions of Theorem 2.7, then

P {∃(t, s) ∈ E : ρφ(t, s) +BF0(t, s) ≥ u(t, s)}

≤ 1− exp

{
EP

(
k∗BF0

1{∀(t,s)∈E:BF0 (t,s)<u(t,s)}

)
− 1

2
ρ2 ∥φ∥2HBF0

}
,

where

k∗BF0
:= ρw(b, d)BF0(b, d) + ρ

∫ (R)

[a,b]

BF0(t, d)d(−w(t, d))

+ ρ

∫ (R)

[c,d]

BF0(b, s)d(−w(b, s)) + ρ

∫ R

E

BF0(t, s)dw(t, s).

Proof. By Theorem 2.7, integration by parts and Jensen’s inequality (cf. Chow
[7]), we get

P {∀(t, s) ∈ E : ρφ(t, s) +BF0(t, s) < u(t, s)}

= exp

{
−1

2
ρ2 ∥φ∥2HBF0

}∫
Ω

1{∀(t,s)∈E:BF0 (t,s)<u(t,s)} exp{k∗
BF0

}dP

≥ exp

{
−1

2
ρ2 ∥φ∥2HBF0

}
exp

{
E
(
k∗BF0

1{∀(t,s)∈E:BF0
(t,s)<u(t,s)}

)}
= exp

{
E
(
k∗BF0

1{∀(t,s)∈E:BF0 (t,s)<u(t,s)}

)
− 1

2
ρ2 ∥φ∥2HBF0

}
.

The proof is complete by the probability formula for the complement of an event. 2

For the second example we observe the case Bf̃ ,F0
= Bf1,F0 , where Bf1,F0 is

the limit process associated with the constant model presented in Example 2.1.1,
with F0(t, s) = t2s2, (t, s) ∈ I. Being a process with the covariance function
KBf1,F0

((t, s), (t′, s′)) = (t∧ t′)2(s∧ s′)2− t2t′2s2s′2, for (t, s), (t′, s′) ∈ I, which can
be represented as

KBf1,F0
((t, s), (t′, s′)) = ⟨1[0,t]×[0,s] − t2s21I,1[0,t′]×[0,s′] − t′2s′21I⟩L2(P0,E),

Bf1,F0 has the reproducing kernel Hilbert space given by

HBf1,F0
:=

{
h : I → R : ∃u ∈ L2(P0, E), h(t, s) =

∫
[0,t]×[0,s]

udP0 − t2s2
∫
I

udP0

}
,

(cf. Lifshits [11], p.93). Thus for every h ∈ HBf1,F0
, h(1, 1) = 0 and it determines

uniquely an absolutely continuous signed measure µh, say, defined on the measur-
able space (I,B(I)), having an L2(P0, E) density with respect to P0. Hence, as a
direct consequence of Proposition 2.6, we have for every h ∈ HBf1,F0

,

dPh
Bf1,F0

dPBf1,F0

(x) = exp

{∫ (R)

I

dµh

dP0
(t, s) dx(t, s)− 1

2
∥h∥2HBf1,F0

}
,

provided dµh

dP0
∈ BVH(I).
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Theorem 2.10. Suppose the boundary u is continuous on I, and the trend φ ∈
HBf1,F0

, such that g :=
dµφ

dP0
is non decreasing on I. If the marginal functions

g(·, 1) : [0, 1] → R, t 7→ g(t, 1) and g(1, ·) : [0, 1] → R, s 7→ g(1, s) are non increas-
ing, then

P {∀(t, s) ∈ I : ρφ(t, s) +Bf1,F0(t, s) < u(t, s)}
≤ m∗P {∀(t, s) ∈ I : Bf1,F0(t, s) < u(t, s)} , ρ > 0,

where

m∗ := exp

{
ρg(1, 1)u(1, 1) + ρ

∫ (R)

[0,1]

u(t, 1)d(−g(t, 1)) + ρ

∫ (R)

[0,1]

u(1, s)d(−g(1, s))

+ρ

∫ (R)

I

u(t, s)dg(t, s)− 1

2
ρ2 ∥φ∥2HBf1,F0

}
.

Corollary 2.11. If u and φ satisfy the conditions of Theorem 2.10, we get

P{∃(t, s) ∈ I : ρφ(t, s) +Bf1,F0(t, s) ≥ u(t, s)}
≥ 1−m∗P{∀(t, s) ∈ I : Bf1,F0

(t, s) < u(t, s)}
= 1−m∗ +m∗P{∃(t, s) ∈ I : Bf1,F0(t, s) ≥ u(t, s)}.

Corollary 2.12. For ρ > 0, let

m∗
Bf1,F0

:=

∫ (R)

[0,1]

ρBf1,F0(t, 1)d(−g(t, 1)) +
∫ (R)

[0,1]

ρBf1,F0(1, s)d(−g(1, s))

+

∫ (R)

I

ρBf1,F0(t, s)dg(t, s).

Then by Proposition 2.6, integration by parts and Jensen’s inequality, we get

P {∀(t, s) ∈ I : ρφ(t, s) +Bf1,F0
(t, s) < u(t, s)}

≥ exp

{
E
(
m∗

Bf1,F0
1{∀(t, s) ∈ I : Bf1,F0(t, s) < u(t, s)}

)
− 1

2
ρ2 ∥φ∥2Bf1,F0

}
.

It follows that

P {∃(t, s) ∈ I : ρφ(t, s) +Bf1,F0(t, s) ≥ u(t, s)}

≤ 1− exp

{
E
(
m∗

Bf1,F0
1{∀(t,s)∈I:Bf1,F0

(t,s)<u(t,s)}

)
− 1

2
ρ2 ∥φ∥2Bf1,F0

}
.
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