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Abstract. Let Λ and Γ be row finite k-graphs without sources. We show that
∗-algebra homomorphisms ϕ : KPC(Λ) → KPC(Γ) extend to ∗-algebra homomor-

phisms ϕ̄ : C∗(Λ) → C∗(Γ). We also examine necessary and sufficient conditions

for algebra homomorphisms between complex Kumjian-Pask algebras KPC(Λ) and

KPC(Γ) which are ∗-preserving.

Key words and Phrases: Kumjian-Pask algebra, Leavitt path algebra, Homomor-

phism, k-graph

1. INTRODUCTION

For any commutative ring K with 1 and a row finite k-graph Λ without
source, Aranda-Pino, Clark, Huef and Raeburn [13] introduced Kumjian-Pask al-
gebra KPK(Λ). Since then many researchers sought to explore and extend this
algebra, [16, 17, 18, 21, 7, 19, 20, 4, 3, 5, 9, 6, 8, 12] are among others.

Kumjian-Pask algebra is a purely algebraic analog of k-graph algebra C∗(Λ)
which was firstly introduced by Kumjian and Pask [10]. As another point of view,
the Kumjian-Pask algebra is a generalization of the notion of Leavitt-path algebra
of [2] for the row finite graph E to higher rank graph Λ. When we specify the
ring K to be the complex field C, we can investigate relation between k-graph
algebras C ∗ (Λ) and the complex Kumjian-Pask algebras KPC(Λ). In [16] it was
shown that the algebraic structure of the complex Kumjian-Pask algebras is the
same with the algebraic structure of the k-graph algebras. The relation can be
seen through the injective algebra ∗-homomorphism ιΛ : KPC(Λ) → C∗(Λ) which
maps generators of KPC(Λ) to the generators of C∗(Λ). Through ιΛ we can view
KPC(Λ) as a dense ∗-subalgebra of C∗(Λ). Furthermore when |Λ0| < ∞, it was
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proved in Proposition 4.3 of [16] that the C∗(Λ) (as a ∗-algebra or as a ∗-ring) is
isomorphic to the Kumjian-Pask algebra KPC(Λ).

Kumjian-Pask algebras also can be seen as a generalization of Leavitt path
algebras of directed graphs to higher rank graphs. Leavitt path algebras are purely
algebraic analogs of graph algebras and results on Leavitt path algebras emerge as
important as determining the C∗-algebra structure for the graph algebras. Simi-
larly, investigating algebraic structure of Kumjian-Pask algebras is very important
just as investigating the C∗-algebra structure of the k-graph algebras.

In [1], Abrams and Tomforde investigated homomorphisms between Leavitt
path algebras. They proved that ∗-homomorphisms between complex Leavitt path
algebras extend to homomorphisms between associated graph C∗-algebras. They
also examined algebra homomorphisms between complex Leavitt path algebras and
obtained necessary and sufficient conditions for an algebra homomorphism between
complex Leavitt path algebras to be a ∗-algebra homomorphism. These results
provide a more descriptive translation from Leavitt path algebras to graph C*-
algebras.

We aim to establish an anlogue of Abrams and Tomforde’s results for Kumjian
Pask algebras. To obtain this, we used results in [16] to generalize the idea of
Abrams and Tomforde to a more general case, i.e to row finite k-graph without
sources and we obtained an analogue of their results for higher rank graphs. We
begin with some preliminaries in Section 2 to establish notations and basic facts
on k-graphs, k-graph algebras and Kumjian-Pask algebras. In Result (Subsection
3.1), we demonstrate that every homomorphism between complex Kumjian-Pask
algebras extends to ∗-homomorphism of k-graph algebras. This result is an exten-
sion of Abrams and Tomforde’s result to higher rank graph. In Subsection 3.2, we
employ the result in Subsection 3.1 to obtain necessary and sufficient conditions
for an algebra homomorphism between complex Kumjian-Pask algebras which is
∗-preserving. This is a generalization of Proposition 5.3 of Abrams and Tomforde
[1] to higher rank graphs.

2. Preliminaries of Kumjian-Pask Algebras

We recall some terminologies which will be used in the sequel. Kumjian and
Pask [10] introduced k-graphs also commonly referred to as higher rank graphs.
Higher rank graphs are higher-dimensional analogues of directed graphs. To deal
with higher rank graphs, we view the pointwise additive semigroup Nk := {0, 1, 2, ...}k
as the morphisms in a category with one object, and the composition map in the
category is given by the addition in Nk. We denote this category by Nk. In [10,
Definition 1], a k-graph is defined as a countable category Λ = (Λ0,Λ, r, s) together
with a functor d : Λ → Nk that satisfies the factorisation property: for each (mor-
phism) λ ∈ Λ and each decomposition d(λ) = m + n with m,n ∈ Nk, there exists
unique µ and ν such that d(µ) = m, d(ν) = n with λ = µν.

Given any k-graph Λ and n ∈ Nk, the symbol Λn denotes the set of paths
of degree n and the symbol Λ̸=0 denotes the set of paths of nonzero degree. The
symbol vΛn denotes the set of paths degree n ∈ Nk with range v ∈ Λ0.
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Definition 2.1. Suppose Λ is a k-graph. If for every v ∈ Λ0 and n ∈ Nk, the set
vΛn is finite, Λ is called row-finite. If vΛn ̸= ∅ for all v ∈ Λ0 and n ∈ Nk, Λ is
called has no sources.

In [13], Aranda-Pino, Clark, Huef and Raeburn introduced the concept of the
Kumjian-Pask algebra of k-graph without sources which gives a purely algebraic
model for the k-graph algebras. This algebra is a generalization of Leavitt path
algebra LK(E) for row finite graph E and a field K to higher-rank graph. When
K is the field of complex numbers, then LC(E) describes the algebraic structure of
the graph algebra C∗(E) of [11].

Let Λ be a k-graph. For any λ ∈ Λ define a ghost path λ∗, as a new path
with the degree, source and range defined by

d(λ∗) = −d(λ), r(λ∗) = s(λ), s(λ∗) = r(λ).

The set of ghost paths is denoted by G(Λ), or G(Λ ̸=0) if the vertices are excluded.
For λ, µ ∈ Λ̸=0 with r(µ∗) = s(λ∗), we set λ∗µ∗ = (µλ)∗ to obtain the composition
on G(Λ).

Definition 2.2. [13, Definition 3.1] Let R be a commutative ring with 1 and Λ be
a row finite k-graph without sources. Functions P : Λ0 → A and S : Λ̸=0 → A
satisfying Kumjian-Pask relations:

(KP1) {Pv : v ∈ Λ0} is a family of mutually orthogonal idempotents,

(KP2) for all λ, µ ∈ Λ̸=0 with r(µ) = s(λ), we have

SλSµ = Sλµ, Sµ∗Sλ∗ = S(λµ)∗ , Pr(λ)Sλ = Sλ = SλPs(λ),

Ps(λ)Sλ∗ = Sλ∗ = Sλ∗Pr(λ),

(KP3) for all λ, µ ∈ Λ̸=0 with d(λ) = d(µ) we have

Sλ∗Sµ = δλ,µPs(λ),

(KP4) for all v ∈ Λ0 and all n ∈ Nk \ {0} we have

Pv =
∑

λ∈vΛn

SλSλ∗ ,

is called a Kumjian-Pask Λ-family (P, S) in an R-algebra A.

Remark 2.3. The notation for the Kumjian-Pask family follows the convention in
[15]: where lowercase letters will be used when the Kumjian-Pask family has a
universal property.

The Kumjian-Pask algebra, denoted as KPR(Λ), is defined for a row finite
k-graph Λ without sources and commutative ring R with 1. It is an R-algebra
generated by the Kumjian-Pask Λ-family (p, s) [13]. To show the existence of
such algebra, Aranda-Pino and his collaborators define a free algebra FR(w(X)) on
X := Λ0∪Λ ̸=0∪G(Λ ̸=0). Let I be the ideal generated by the union of the following
sets:
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• {vw − δv,wv : v, w ∈ Λ0};
• {λ− µν, λ∗ − ν∗µ∗ : λ, µ, ν ∈ Λ̸=0 and λ = µν}

∪{r(λ)λ− λ, λ− λs(λ), s(λ)λ∗ − λ∗, λ∗ − λ∗r(λ) : λ ∈ Λ ̸=0};
• {λ∗µ− δλ,µs(λ) : λ, µ ∈ Λ̸=0 such that d(λ) = d(µ)};
• {v −

∑
λ∈vΛn λλ∗ : v ∈ Λ0, n ∈ Nk \ {0}}.

The quotient FR(w(X))/I is then defined as the Kumjian-Pask algebraKPR(Λ). In
[13, Theorem 3.4] it was demonstrated that this algebra is universal in the following
sense: whenever (Q,T ) is a Kumjian-Pask Λ-family in an R-algebra A, there exists
a unique R-algebra homomorphism πQ,T : KPR(Λ) → A such that

πQ,T (pv) = Qv, πQ,T (sλ) = Tλ, πQ,T (sµ∗) = Tµ∗

for v ∈ Λ0 and λ, µ ∈ Λ̸=0.

Remark 2.4. The Kumjian-Pask relations (KP1) through (KP4), along with the
convention that Sv := Pv and Sv∗ = Pv for v ∈ Λ0 implies that the Kumjian-Pask
algebra KPR(Λ) generated by a Kumjian-Pask family (P, S) is

span{SλSµ∗ : λ, µ ∈ Λ with s(λ) = s(µ)}. (1)

When we consider the coefficient ring R is the field of complex number C,
the structure of KPC(Λ) is a

∗-algebra. This is possible because we can define an
involution in KPC(Λ) through the mapping

csλsµ∗ 7→ c̄sµsλ∗ .

Suppose Λ is a row finite k-graph without sources, Kumjian and Pask [10]
define a Cuntz-Krieger Λ-family in C∗(Λ), i.e. a family of partial isometries {Tλ :
λ ∈ Λ} which satisfying the Cuntz-Krieger relations:

(CK1) {Tv : v ∈ Λ0} is a family of mutually orthogonal projections,
(CK2) Tλµ = TλTµ for all λ, µ ∈ Λ with s(λ) = r(µ),
(CK3) T ∗

λTλ = Ts(λ),

(CK4) Tv =
∑

λ∈vΛm TλT
∗
λ for v ∈ Λ0 and m ∈ Nk.

For v ∈ Λ0, we write Qv := Tv, and for µ ∈ Λ̸=0 we denote Tµ∗ := T ∗
µ .

A straightforward computation shows that the family (Q,T ) := {Tλ : λ ∈ Λ}
satisfies (KP1) through (KP4), and hence is a Kumjian-Pask Λ-family in C∗(Λ).
For example, let µ, λ ∈ Λ̸=0 with d(λ) = d(µ). If v = r(λ) = r(µ), it is easy to see
that Tλ∗Tµ = Qs(λ) by (CK3). If v = r(λ) ̸= r(µ), then λ ̸= µ which implies

Tλ∗Tµ = Tλ∗TλTλ∗TµTµ∗Tµ

= Tλ∗(TλTλ∗)(TµTµ∗)Tµ

= 0

because TλTλ∗ and TµTµ∗ are orthogonal. Then (KP3) is satisfied.

The existence of a unique (C-algebra) homomorphism πQ,T : KPC(Λ) →
C∗(Λ) such that

πQ,T (Pv) = Qv, πQ,T (Sλ) = Tλ, πQ,T (Sµ∗) = Tµ∗ := T ∗
µ , (2)
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is guaranted by Theorem 3.4 of [13]. Hence from (1), πQ,T maps KPC(Λ) onto
A = span{TλT ∗

µ : λ, µ ∈ Λ}, and πQ,T is injective by Theorem 4.1 of [13]. By
[13, Lemma 7.4], the algebra A forms a dense ∗-subalgebra of C∗(Λ). Since it is
Zk-graded, KPC(Λ) can be viewed as a dense ∗-subalgebra of the k-graph algebra
C∗(Λ). In [16] it was discussed some condition which implies equivalence between
KPC(Λ) and C

∗(Λ) as *-algebras or as *-rings.

Remark 2.5. When a specific Kumjian-Pask family is not explicitly specified, Ros-
januardi in [16] write ιΛ for the injection KPC(Λ) → C∗(Λ) instead of particular
πQ,T , and we will follow this notation.

3. MAIN RESULTS

3.1. Extension of ∗-homomorphism of Kumjian-Pask Algebras.
For any graphs E and F , in [1] Abrams and Tomforde showed that ∗-homomorphisms
between LC(E) and LC(F ) extends to

∗-homomorphisms between C∗(E) and C∗(F ).
Hence, if LC(E) ∼= LC(F ) (as

∗-algebras), it implies that C∗(E) ∼= C∗(F ). We prove
that a similar result for higher-rank graph can be obtained.

Proposition 3.1. Let Λ and Γ be row finite k-graphs without sources. If ιΛ, ιΓ are
injections as in Remark 2.5, and ϕ : KPC(Λ) → KPC(Γ) is a ∗-algebra homomor-
phism, then there is a unique ∗-algebra homomorphism ϕ̄ : C∗(Λ) → C∗(Γ) such
that the following diagram

C∗(Λ)
ϕ̄
// C∗(Γ)

KPC(Λ)

ιΛ

OO

ϕ
// KPC(Γ)

ιΓ

OO

commutes. Moreover, if ϕ is a ∗-algebra isomorphism, then ϕ̄ is a ∗-algebra iso-
morphism.

Proof. Let {sλ : λ ∈ Λ} be a generating Cuntz-Krieger Λ-family in C∗(Λ) and
{tλ : λ ∈ Γ} be a generating Cuntz-Krieger Γ-family in C∗(Γ). Let KPC(Λ) and
KPC(Γ) respectively be generated by Kumjian-Pask families (s′, p′) and (t′, q′).

Given a ∗-algebra homomorphism ϕ : KPC(Λ) → KPC(Γ). Since ιΓ ◦ ϕ is
a ∗-algebra homomorphism, {ιΓ(ϕ(s′λ)) : λ ∈ Λ} forms a Cuntz-Krieger Λ-family
in C∗(Γ). The universal property of C∗(Λ) then implies the existence of a unique
∗-algebra homomorphism ϕ̄ : C∗(Λ) → C∗(Γ) such that ϕ̄(sλ) = ιΓ(ϕ(s

′
λ)), ∀λ ∈ Λ.

A routine calculation on the generators of C∗(Λ) and KPC(Λ) shows that ϕ̄ ◦ ιΛ =
ιΓ ◦ ϕ, i.e. the diagram commutes.
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If ϕ is an isomorphism, then so is ϕ−1. As in the previous paragraph,
{ιΛ(ϕ−1(t′λ)) : λ ∈ Γ} is a Cuntz-Krieger Γ-family in C∗(Λ). Hence the univer-
sal property of C∗(Γ) gives a unique ∗-algebra homomorphism ρ : C∗(Γ) → C∗(Λ)
such that ρ(tλ) = ιΛ(ϕ

−1(t′λ)), ∀λ ∈ Γ.

Computations on the generators show that

ϕ̄ ◦ ρ(tλt∗µ) = ϕ̄(ιΛ ◦ ϕ−1(t′λt
′∗
µ )) = ιΓ ◦ ϕ(ϕ−1(t′λt

′∗
µ )) = ιΓ(t

′
λt

′∗
µ ) = tλt

∗
µ, ∀λµ ∈ Γ

and

ρ ◦ ϕ̄(sλs∗µ) = ρ(ιΓ(ϕ(s
′
λs

′∗
µ )) = ρ(ιΓ(t

′
λt

′∗
µ )) = ρ(tλt

∗
µ))

= ιΛ(ϕ
−1(t′λt

′∗
µ ))

= ιΛ(s
′
λs

′∗
µ ) = sλs

∗
µ, ∀λ, µ ∈ Λ.

Hence ϕ̄◦ρ = IdC∗(Γ) and ρ◦ ϕ̄ = IdC∗(Λ). Therefore ϕ̄ is a ∗-algebra isomorphism.
□

As a consequence of above proposition, we obtain a generalization of Corollary
4.5 of [1] to Kumjian-Pask algebras.

Corollary 3.2. Let Λ and Γ be any row finite k-graphs without sources such that
KPC(Λ) ∼= KPC(Γ) (as

∗-algebras). Then C∗(Λ) ∼= C∗(Γ) as ∗-algebras.

3.2. Necessary and sufficient conditions for ∗-preserving homomorphisms.
An algebra homomorphism ϕ between ∗-algebras A and B is said to be ∗-preserving,
if it preserves the adjoint, i.e. ϕ(a∗) = ϕ(a)∗ for every a ∈ A. Notably, not all al-
gebra homomorphisms between algebras are ∗-preserving. Abrams and Tomforde
[1, Example 4.1] give an example of algebra homomorphism between algebras of
continuous functions which is not ∗-preserving. In [14] Power gives an example of
algebra homomorphism between digraph algebras that is not ∗-preserving.

In this section we characterise homomorphisms between complex Kumjian-
Pask algebras which are ∗-preserving. Our result generalizes that of Abrams and
Tomforde [1, Proposition 5.3] which is a necessary and sufficient condition of ∗-
preserving algebra homomorphism between Leavitt-path algebras.

Lemma 3.3. Let Λ and Γ be row finite k-graphs without sources. If

ψ : KPC(Λ) → KPC(Γ)

is an algebra homomorphism between complex Kumjian-Pask algebras and ψ(sλs
∗
λ)

is a projection, then

ψ(s∗λ)
∗ψ(sλ)

∗ = ψ(sλs
∗
λ).

Proof. Since ψ(sλ)ψ(s
∗
λ) = ψ(sλs

∗
λ), by taking adjoint of both sides we get

ψ(s∗λ)
∗ψ(sλ)

∗ = (ψ(sλ)ψ(s
∗
λ))

∗ = (ψ(sλs
∗
λ))

∗ = ψ(sλs
∗
λ),

because ψ(sλs
∗
λ) is a projection. □
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Lemma 3.4. Let Λ and Γ be row finite k-graphs without sources, and

ψ : KPC(Λ) → KPC(Γ)

is an algebra homomorphism between complex Kumjian-Pask algebras. If ψ(sλ) and
ψ(s∗λ) are contractions, then both

ψ(s∗λ) and ψ(sλ)
∗

are partial isometries, and

ψ(s∗λ)ψ(sλs
∗
λ) = ψ(s∗λ), ψ(sλ)

∗ψ(sλs
∗
λ) = ψ(sλ)

∗.

Proof. From (KP3) and (KP2), we obtain

ψ(sλs
∗
λ)ψ(sλs

∗
λ) = ψ(sλs

∗
λsλs

∗
λ) = ψ(sλps(λ)s

∗
λ) = ψ(sλs

∗
λ),

hence ψ(sλs
∗
λ) is an idempotent. As ∥ψ(sλs∗λ)∥ ≤ ∥ψ(sλ)∥∥ψ(s∗λ)∥, ψ(sλs∗λ) is a

contractive idempotent, therefore it is a projection. Since ψ(sλ)ψ(s
∗
λ) = ψ(sλs

∗
λ),

by applying [1, Lemma 5.2] to the contractions ψ(sλ) and ψ(s∗λ), yields that
ψ(s∗λ)ψ(sλs

∗
λ) is a partial isometry. But

ψ(s∗λ)ψ(sλs
∗
λ) = ψ(s∗λsλs

∗
λ) = ψ(ps(λ)s

∗
λ) = ψ(s∗λ),

therefore ψ(s∗λ) is a partial isometry.

Since ψ(sλs
∗
λ) is a projection, (KP3) and (KP2) implies

ψ(sλ)
∗ψ(sλs

∗
λ) = ψ(sλ)

∗(ψ(sλs
∗
λ))

∗ = ψ(sλ)
∗ψ(s∗λ)

∗ψ(sλ)
∗

= (ψ(sλ)ψ(s
∗
λ)ψ(sλ))

∗ = (ψ(sλs
∗
λsλ))

∗

= (ψ(sλps(λ)))
∗ = (ψ(sλ))

∗.

From the hypotesis, ψ(sλ) is a contraction, hence ψ(sλ)
∗ is so. Now apply [1,

Lemma 5.2] to the contractions ψ(sλ)
∗ and ψ(s∗λ). Since

ψ(s∗λ)
∗ψ(sλ)

∗ = (ψ(sλ)ψ(s
∗
λ))

∗ = (ψ(sλs
∗
λ))

∗ = ψ(sλs
∗
λ),

ψ(sλ)
∗ψ(sλs

∗
λ) is a partial isometry. Lemma 3.3 together with (KP3) and (KP2)

imply that

ψ(sλ)
∗ψ(sλs

∗
λ) = ψ(sλ)

∗ψ(s∗λ)
∗ψ(sλ)

∗ = (ψ(sλs
∗
λsλ))

∗

= (ψ(sλps(λ)))
∗ = (ψ(sλ))

∗.

Therefore ψ(sλ)
∗ is a partial isometry. □

If E,F are graphs, and ψ : LC(E) → LC(F ) is an algebra homomorphism
between Leavitt path algebras, Abrams and Tomforde [1] gave a necessary and
sufficient condition so that ψ is a ∗-homomorphism. The technique described in [1]
can be applied to obtain a similar result for complex Kumjian-Pask algebras.

Proposition 3.5. Let Λ and Γ be row finite k-graphs without sources. If ψ :
KPC(Λ) → KPC(Γ) is an algebra homomorphism between Kumjian-Pask algebras,
then ψ is an algebra ∗-homomorphism if and only if: ∥ψ(sµ)∥ ≤ 1, ∥ψ(s∗µ)∥ ≤
1, ∀µ ∈ Λ1, and ∥ψ(pv)∥ ≤ 1 ∀v ∈ Λ0 that is a sink.
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Proof. Suppose ψ : KPC(Λ) → KPC(Γ) is an algebra∗-homomorphism. Then
ψ must be contractive because Proposition 3.1 implies that ψ extends to a ∗-
homomorphism of C∗(Λ) to C∗(Γ), and hence, we obtain the necessary condition.

To prove the sufficient condition, suppose v ∈ Λ0. We want to show that
ψ(pv) is an idempotent. We first assume that v is not a sink. Then for every
ei ∈ Nk, the set Λei

v is not empty. Suppose λ ∈ Λei0
v for some ei0 ∈ Nk. Since pv is

an idempotent, then ψ(pv) is also an idempotent. When v is a sink, ∥ψ(pv)∥ ≤ 1
by the hypothesis. But

∥ψ(pv)∥ = ∥ψ(pv)2∥ ≤ ∥ψ(pv)∥2,

which implies ∥ψ(pv)∥ ≥ 1. Hence ψ(pv) is an idempotent with ∥ψ(pv)∥ = 1. Hence
for every v ∈ Λ0, ψ(pv) is a projection. Therefore for every v ∈ Λ0,

ψ(p∗v) = ψ(pv) = ψ(pv)
∗.

Suppose λ ∈ Λ ̸=0, from (KP3) and (KP2), we see that sλs
∗
λ is an idempotent,

which implies that ψ(sλs
∗
λ) is also an idempotent. From the hypothesis, we get

∥ψ(sλs∗λ)∥ ≤ ∥ψ(sλ)∥∥ψ(s∗λ)∥ ≤ 1,

hence ψ(sλs
∗
λ) is contractive idempotent, therefore it is a projection. Lemma 3.4

implies that

ψ(sλ)ψ(sλ)
∗ = ψ(sλ)ψ(sλ)

∗ψ(sλs
∗
λ) = ψ(sλ)ψ(s

∗
λ) = ψ(sλs

∗
λ).

From (KP3), (KP2) and Lemma 3.4 we get

ψ(sλ)
∗ = ψ(sλps(λ))

∗ = ψ(ps(λ))
∗ψ(sλ)

∗ = ψ(ps(λ))ψ(sλ)
∗

= ψ(s∗λsλ)ψ(sλ)
∗ = ψ(s∗λ)ψ(sλ)ψ(sλ)

∗ψ(sλs
∗
λ)

= ψ(s∗λ)ψ(sλ)ψ(sλ)
∗ψ(sλ)ψ(s

∗
λ)

= ψ(s∗λ)ψ(sλ)ψ(s
∗
λ) = ψ(s∗λsλs

∗
λ)

= ψ(ps(λ)s
∗
λ) = ψ(s∗λ).

Hence ψ(s∗λ) = ψ(sλ)
∗ for all λ ∈ Λ̸=0, then (1) and (2) imply that ψ(x∗) = ψ(x)∗

for all x ∈ KPC(Λ). Therefore ψ is an algebra ∗-homomorphism.

□

Corollary 3.6. Let Λ and Γ be row finite k-graphs without sources such that |Λ0| <
∞ and |Γ0| < ∞. If ψ : C∗(Λ) → C∗(Γ) is an algebra homomorphism between k-
graph algebras, then ψ is an algebra ∗-homomorphism if and only if: ∥ψ(sµ)∥ ≤
1, ∥ψ(s∗µ)∥ ≤ 1, ∀µ ∈ Λ1, and ∥ψ(pv)∥ ≤ 1 ∀v ∈ Λ0 that is a sink.

Proof. Proposition 4.3 of [16] implies that the inclusions ιΛ : KPC(Λ) → C∗(Λ)
and ιΓ : KPC(Γ) → C∗(Γ) are surjective, hence KPC(Λ) ∼= C∗(Λ) and KPC(Γ) ∼=
C∗(Γ). Proposition 4.3 then gives the result. □
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4. CONCLUDING REMARKS

We have obtained an analogue of Abrams and Tomforde’s results for Kumjian-
Pask algebras by leveraging the fundamental properties of Kumjian-Pask algebras.
We extended Abrams and Tomforde’s concepts to row finite k-graph without sources
and we obtained an analog of their results for higher rank graphs.

Our results provide descriptive properties that can be translated from Kumjian-
Pask algebras to higher rank graph C*-algebras. We believe that our findings can
be further generalized to describe properties of Kumjian-Pask algebras of more
general k-graph.
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Research Grant (Penelitian Bidang Keilmuan-Sekolah Pasca Sarjana).
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