A NOTE ON FREE MODULE DECOMPOSITION OVER A PRINCIPAL IDEAL DOMAIN

Ni Wayan Switrayni ${ }^{a}$, I Gede Adhitya Wisnu Wardhana ${ }^{b}$, Qurratul Aini ${ }^{c}$
Department of Mathematics, Universitas Mataram, Indonesia, ${ }^{a}$ niwayan.switrayni@unram.ac.id, ${ }^{b}$ adhitya.wardhana@unram.ac.id, ${ }^{c}$ qurratulaini.aini@unram.ac.id

Abstract

Some methods have been used to express a finitely generated module over a principal ideal domain as a finite direct sum of its cyclic submodules. In this paper, we give an alternative technique to decompose a free module with finite rank over a principal ideal domain using eigen spaces of its endomorphism ring.

Endomorphism, Free Module, Principal Ideal Domain, Eigen Space.

1. INTRODUCTION

There are many decompositions of a module that are brought up to make it easy to analyze like the decomposition of a vector space by its basis [1]. Some research on the decomposition of a finitely generated module had been conducted such as by Hadjirezaei and Hedayat [3] who studied its decomposition using fitting ideals. A recent study gives a new way of proving the Main Fundamental Theorem for the finitely generated module over a principal ideal domain (PID) was carried out in 2020 in a favor of the module decomposition [4].

A study on matrices over a commutative ring investigated the properties of eigenspaces of a matrix. It was concluded that the eigenspace of a matrix over a commutative ring no need to have a basis. In this paper, we provide another technique to decompose a free module over a principal ideal domain with finite rank using its module endomorphism. First, we generalize the concept of the eigenspaces of a matrix into a general module endomorphism and then express this free module into a direct sum of these eigenspaces. Moreover, some particular matrices are also used in finding such endomorphism.

[^0]General properties, such as operations, determinants, etc on $M_{n}(R)$, the set of square matrices over a ring with unity R, have been defined as those in matrices over a field, see the details on [2]. In this paper, $U(R)$ will denote the set of all units in R. Some basic theories and notations are given as follows.

Definition 1.1. [2] Let $A \in M_{m \times n}(R)$ and suppose $1 \leq t \leq \min \{m, n\}$. The $t \times t$ minor of A is the determinant of a $t \times t$ submatrix of A.

Theorem 1.2. [2] If $A \in M_{n}(R)$, then A is invertible if and only if $\operatorname{det}(A) \in U(R)$.
Definition 1.3. [2] Let $A \in M_{m \times n}(R)$. For each $t=1, \ldots, r=\min \{m, n\}, I_{t}(A)$ will denote the ideal in R generated by all $t \times t$ minors of A. Moreover, for any integer $t>\min \{m, n\}$ and $t \leq 0, I_{t}(A)=\{0\}$ and $I_{t}(A)=R$ respectively.
Definition 1.4. [2] Let $A \in M_{m \times n}(R)$. The rank of A, denoted by $r k(A)$ is the following integer: $r k(A)=\max \left\{t \mid A n n_{R}\left(I_{t}(A)\right)=0\right\}$, where $A n n_{R}\left(I_{t}(A)\right)$ denotes the annihilator of $I_{t}(A)$.

Theorem 1.5. [2] If $A \in M_{n}(R)$, then $r k(A)<n$ if and only if $\operatorname{det}(A) \in Z(R)$.
Theorem 1.6. [2] Given $A \in M_{m \times n}(R)$. The homogenous linear system $A x=0$ has a non-trivial solution if and only if $r k(A)<n$.

Now, the definition of eigen value and eigen vector of a square matrix over R is given as follows.
Definition 1.7. [2] Given A be a matrix in $M_{n}(R)$.
(1) An element $d \in R$ is called as eigen value of A if $A \xi=d \xi$ for some non-zero vector $\xi \in R^{n}$.
(2) A non-zero vector $\xi \in R^{n}$ is called an eigen vector of A if $A \xi=d \xi$ for some $d \in R$
(3) Let d be an eigen value of A. $E(d)=\left\{\xi \in R^{n} \mid A \xi=d \xi\right\}$ is called the eigen space associated to d.

In the definition, it is clear that $E(d)=N S(d I-A)$, where $N S(d I-A)$ denotes the null space of the matrix $d I-A[2]$. Now we move to some basic definitions and theorems in module theory.
Definition 1.8. [5] A module M over R is called the direct sum of a family $\mathcal{F}=$ $\left\{S_{i} \mid i \in I\right\}$ of submodules of M, denoted by $M=\bigoplus \mathcal{F}$ or $M=\bigoplus_{i \in I} S_{i}$ if satisfying:
(1) $M=\sum_{i \in I} S_{i}$
(2) For each $i \in I, S_{i} \cap\left(\sum_{j \neq i} S_{j}\right)=\{0\}$.

Subsequently, the definition of rank of a free module over a commutative ring with unity is given as follows.
Definition 1.9. [5] Suppose R is a commutative ring with unity. The rank of a nonzero R-free module M, denoted by $r k(M)$, is the cardinality of any basis for M. Moreover, the trivial module $\{0\}$ has rank 0 .

Note that we used same symbol for the rank of a module and that of a matrix as those two definitions are analogous like in vector spaces. Moreover, when the base ring is a principal ideal domain, some significant properties apply.
Theorem 1.10. [5] Let M be a free module over a principal ideal domain R. Any submodule S of M is also free and $r k(S) \leq r k(M)$.

Theorem 1.11. [5] A finitely generated module over a principal ideal domain is free if and only if it is torsion-free.

2. MAIN RESULTS

We begin this section by defining the notion of eigen vector of a module endomorphism over a commutative ring with unity.

Definition 2.1. [2] Given M be an R-module and $\theta: M \rightarrow M$ be an endomorphism. An eigen vector of θ is a non-zero vector v in M satisfying $\theta(v)=\lambda v$ for some $\lambda \in R$. The scalar λ is called the eigen value of θ associated with the eigen vector v.

Now we have a properties that the characterization polynom value must be a zero or a zero divisor, and we give the notation $Z(R)$ is the collection of zero divisor of ring R with zero element.

Theorem 2.2. Given M be a free R-module with rank n. Let $A=[\theta]_{B}$ be a representation matrix of an endomorphism $\theta: M \rightarrow M$, where B is a basis of M. A scalar $\lambda \in R$ is an eigen value of θ if and only if $C_{A}(\lambda) \in Z(R)$.

Proof. Let $\lambda \in R$ be an eigen value of θ. Hence $\theta(v)=\lambda v$ for some $v \in M$ and $v \neq 0$. This implies $[\theta(v)]_{B}=\lambda[v]_{B}$ or we can write $\lambda I_{n}[v]_{B}-A[v]_{B}=\left(\lambda I_{n}-\right.$ $A)[v]_{B}=0$. Since $v \neq 0$, we have $[v]_{B} \neq 0$, which means that the equation has a nonzero solution. By Theorem (1.6), we have $\operatorname{rk}\left(\lambda I_{n}-A\right)<n$, and so by Theorem (1.5), $C_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right) \in Z(R)$. Conversely, suppose that $C_{A}(\lambda) \in Z(R)$. By Theorem (1.5), we have $r k\left(\lambda I_{n}-A\right)<n$, and by Theorem (1.6) we have $\left(\lambda I_{n}-A\right) w=0$ for some $w \in R^{n}, w \neq 0$. Now, set $v \in M$ that satisfies $[v]_{B}=w$, hence $\theta(v)=\lambda v$.

In the rest of this paper, R will denote a principal ideal domain and M will be a free module with finite rank over R. Also, the set of all eigen values of an endomorphism θ will be denoted by $\mathcal{R}(\theta)$.

Theorem 2.3. Given $r k(M)=n$ and $\theta: M \rightarrow M$ be an endomorphism on free module M. The set of eigen vectors from distinct eigen spaces is linearly independent.

Proof. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be a set of eigen vectors with v_{i} is an eigen vector associated with eigen value λ_{i} where $\lambda_{i} \neq \lambda_{j}$ when $i \neq j, i, j=1,2, \ldots, r$. Suppose
S is linearly dependent. Since M is free, we have every non zero singleton set in M is linearly independent. Now, let k be the greatest number where $1 \leq k<r$ (obtained by re-indexing if necessary) so that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent. Hence $\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}$ is linearly dependent. Hence the equation $r_{1} v_{1}+r_{2} v_{2}+$ $\ldots+r_{k} v_{k}+r_{k+1} v_{k+1}=0$ is not only satisfied by all scalars with zero values, which at least (without loss of generality) $\lambda_{k+1} \neq 0$. From this equation we obtain $r_{1} \theta\left(v_{1}\right)+r_{2} \theta\left(v_{2}\right)+\ldots+r_{k} \theta\left(v_{k}\right)+r_{k+1} \theta\left(v_{k+1}\right)=0$ or i.e with $r_{1} \lambda_{1} v_{1}+r_{2} \lambda_{2} v_{2}+$ $\ldots+r_{k} \lambda_{k} v_{k}+r_{k+1} \lambda_{k+1} v_{k+1}=0$. By a multiplication of λ_{k+1} to the first equation and then subtract with the second equation, we have $r_{1}\left(\lambda_{k+1}-\lambda_{1}\right) v_{1}+r_{2}\left(\lambda_{k+1}-\right.$ $\left.\lambda_{2}\right) v_{2}+\ldots+r_{k}\left(\lambda_{k+1}-\lambda_{k}\right) v_{k}=0$. By the independence of $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, then we have $r_{i}\left(\lambda_{k+1}-\lambda_{i}\right)=0$ for all $i=1,2, \ldots, k$. Since $\lambda_{k+1} \neq \lambda_{i}$ and R is an integral domain, $r_{i}=0$ for all $i=1,2, \ldots, k$. So we have $r_{k+1} v_{k+1}=0$ and implies $r_{k+1}=0$, which is a contradiction.

It is worth noting that the corollary below is a direct result of the independence condition on Theorem 2.3.

Corollary 2.4. Let $\theta: M \rightarrow M$ be an endomorphism with $R(\theta)$ is all different eigen value of θ. Hence $\sum_{\lambda \in \mathcal{R}(\theta)} E_{\lambda}=\bigoplus_{\lambda \in \mathcal{R}(\theta)} E_{\lambda}$.

In fact, we can consider R^{n} as an R-module. The following theorem will tell us not only about the existence of a decomposition of R^{2} into some eigen spaces but it will also give a method to find such eigen spaces.
Theorem 2.5. If $A=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \in M_{2}(R)$ such that $a-c \neq 0$, then $R^{2}=E(a) \oplus E(c)$ if and only if $(a-c) \mid b$.

Proof. If $A=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \in M_{2}(R)$ such that $a-c \neq 0$, then the set of all eigen values of $A, \mathcal{R}(A)=\{a, c\}$. For $\lambda=a$ we have $E(a)=N S\left[\begin{array}{cc}0 & -b \\ 0 & a-c\end{array}\right]=R\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
For $\lambda=c$, we have $E(c)=N S\left[\begin{array}{cc}c-a & -b \\ 0 & 0\end{array}\right]$.
If $(a-c) \mid b$, then we have $E(c)=R\left[\begin{array}{c}-k \\ 1\end{array}\right]$ for $k \in R$ such that $b=k(a-c)$.
By Theorem (2.3), $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-k \\ 1\end{array}\right]\right\}$ is linearly independent. Moreover, R^{2} is also spanned by S, since $\operatorname{det}\left(\left[\begin{array}{cc}1 & -k \\ 0 & 1\end{array}\right]\right)=1 \in U(R)$. This implies $R^{2}=E(a) \oplus E(c)$. Conversely, if $R^{2}=E(a) \oplus E(c)$, then R^{2} has a basis containing eigen vectors from $E(a)$ and $E(c)$. Since $E(a)=R\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and $R^{2}=E(a) \oplus E(c)$ then there exists $e, f \in R$ with $f \in U(R)$ such that $(c-a) e-b f=0$. Noted that f must be a unit, otherwise it has no basis. This implies $b=(c-a) e f^{-1}$, and means that $(c-a) \mid b$.

Now, let consider for a free module R^{n} with rank n for any $n \geq 2$.
Theorem 2.6. Given $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ : & : & \ddots & : \\ 0 & 0 & \cdots & a_{n n}\end{array}\right] \in M_{n}(R)$ with $a_{i i}-a_{k k} \neq 0$ for any $i \neq k$. If $\left(a_{i i}-a_{k k}\right) \mid a_{i j}$ for all $i<j \leq n$, then $R^{n}=\bigoplus_{i=1}^{n} E\left(a_{i i}\right)$.

Proof. To prove this, we necessary show that the eigen vectors of λ_{i} has the form $\left(k_{i 1} t, k_{i 2} t, \ldots, t, 0, \ldots, 0\right)=t\left(k_{i 1}, k_{i 2}, \ldots, 1,0, \ldots, 0\right)$ where $t \in R$ and for some $k_{i 1}, k_{i 2}, \ldots, k_{i(i-1)} \in R$ i.e with having an eigen vector with 1 at the i-th component and 0 for all j-components when $j>i$. We will prove this by induction on n. For $n=2$, it has been proved by Theorem (2.5). Suppose this is true for $n=k-1$. Now, let $n=k$ and consider the characteristic equation of A, that is:
$|\lambda I-A|=\left|\begin{array}{cccc}\lambda-a_{11} & -a_{12} & \cdots & -a_{1 k} \\ 0 & \lambda-a_{22} & \cdots & -a_{2 k} \\ : & : & \ddots & : \\ 0 & 0 & \cdots & \lambda-a_{k k}\end{array}\right|=0$, hence $\lambda_{i}=a_{i i}$ for all $i=1, \ldots, k$.
It is clear that for every $i=1, \ldots, k-1$, we have x_{k}, the k-th component of the eigen vector associated to λ_{i} must be 0 since $a_{i i}-a_{k k} \neq 0$. Hence the remaining equations are including $k-1$ equations and $k-1$ indeterminates. By the induction hypothesis which is the remaining sub-matrix having $(k-1) \times(k-1)$ size and together with the fact that $x_{k}=0$, then the eigen vectors for λ_{i} for every $i=1, \ldots, k-1$ when $n=k$ are have the form $t\left(k_{i 1}, k_{i 2}, \ldots, 1,0, \ldots, 0\right)$ where $t \in R$ and for some $k_{i 1}, k_{i 2}, \ldots, k_{i(i-1)} \in R$. Moreover, when $\lambda=a_{k k}$, we have the i-th equation for each $1 \leq i \leq(k-1)$ on the linear system obtained from the characteristic equation is $\left(a_{k k}-a_{i i}\right) x_{i}-\sum_{j=i+1}^{k} a_{i j} x_{j}=0$. Since $\left(a_{k k}-a_{i i}\right) \mid a_{i j}, \forall j=i+1, \ldots, k$ and $\left(a_{k k}-a_{i i}\right) \neq 0$, we have $x_{i}=\sum_{j=i+1}^{k} l_{i j} x_{j}$ for some $l_{i j} \in R$ satisfying $l_{i j}\left(a_{k k}-a_{i i}\right)=a_{i j}$. Moreover we can see that every x_{j} for $j=i+1, \ldots, k-1$ can be expressed in the x_{k} form which implies that $x_{i}=d_{i} x_{k}$ for some $d_{i} \in R$. Hence, if $x_{k}=s$ for $s \in R$, then the eigen vector $\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{T}$ associated to λ_{k} has the form $s\left(d_{1}, d_{2}, \ldots, 1\right)$. This implies that for any $n \geq 2$, we have obtained n eigenvectors that span R^{n}. The independence of the vectors is guaranteed by Theorem (2.3). Therefore, we can write $R^{n}=\bigoplus_{i=1}^{n} E\left(a_{i i}\right)$.

One can easily conclude that the Theorem 2.5 and Theorem 2.6 deal for a lower triangular matrix with a similar way of construction.

Now we will use Theorem (2.6) to express any module with finite rank into a direct sum of its eigenspaces. This is stated in the following theorem.

Theorem 2.7. Given M be a free R-module with rank n and B be any basis of M and with $\theta: M \rightarrow M$ be an endomorphism with representation matrix $[\theta]_{B}$ as on Theorem (2.6). Hence $M=\bigoplus_{\lambda \in \mathcal{R}(\theta)} E(\lambda)$.

Proof. By Theorem (2.6), choose any basis $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of R^{n} where $\left\{v_{i}\right\}$ is a basis for the i-th eigen space of $[\theta]_{B}$ with $i=1,2, \ldots, n$. By setting $m_{i} \in M$ such that $\left[m_{i}\right]_{B}=v_{i}$ for all $i=1, \ldots, n$, hence $\left\{m_{i}\right\}$ is a basis for $E\left(\lambda_{i}\right)$. Thus, $M=\bigoplus_{\lambda_{i} \in \mathcal{R}(\theta)} E\left(\lambda_{i}\right)$.

Acknowledgement. The authors would like to thank to the University of Mataram that has supported this research through the PNBP Research Funding 2021.

REFERENCES

[1] Wardhana, I. G. A. W., The Decomposition of a Finitely Generated Module over Some Special Ring, Jurnal Teori dan Aplikasi Matematika, 6(2) (2022), 261-267.
[2] Brown, W. C., Matrices Over Commutative Rings, Marcel Dekker Inc., New York, 1993.
[3] Hadjirezaei, S., and Hedayat, S., Decomposition of Finitely Generated Modues Using Fitting Ideals, Czechoslovak Mathematical Journal, 70(4) (2020), 1179-1190.
[4] Ma,X. R., Liu, H. G., and Zhang, H. L., A Note on Finitely Generated Modules over a PID, Advances in Pure Mathematics, 10(12) (2020), 699-705.
[5] Roman, S., Advanced Linear Algebra, Third Edition, Springer, New York, 2008.

[^0]: 2020 Mathematics Subject Classification: 13C05, 13C12.
 Received: 04-07-2022, accepted: 13-04-2023.

