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Abstract. The coprime graph of a finite group was defined by Ma, denoted by ΓG,

is a graph with vertices that are all elements of group G and two distinct vertices x

and y are adjacent if and only if (|x| , |y|) = 1. In this study, we discuss the numerical

invariants of a generalized quaternion group. The numerical invariant is a property

of a graph in numerical value and that value is always the same on an isomorphic

graph. This research is fundamental research and analysis based on patterns in

some examples. Some results of this research are the independence number of ΓQ4n

is 4n− 1 or 3n and its complement metric dimension is 4n− 2 for each n ≥ 2.
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1. INTRODUCTION

The graph representation of an algebraic structure becomes a hot topic in
recent years. For a finite group G, we can represent G in some simple graphs such
as the coprime graph, the non-coprime graph, the power graph, the intersection
graph, the commuting graph, and others. See [1] [2] [4] [11] [12] for details. In
2014, Ma et al [1] introduced the coprime graph of a finite group G, where the
vertex set of the graph is G and two distinct vertices x and y are adjacent if and
only if the order of x and the order of y are relative primes [1].

In 2021, Nurhabibah et al. [4] give some results on the shape of the coprime
graph of a generalized quaternion group as a bipartite graph, tripartite graph, or
multipartite graph. So, in this article, we would like to discuss numerical invariants
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of the graph as degree, radius, diameter, domination number, independence num-
ber, girth, metric dimension, and complement metric dimension. The numerical
invariant is a property of a graph in numerical value and that value is always the
same on an isomorphic graph.

2. DEFINITION AND SOME PROPERTIES

A generalized quaternion group is a special group with a definition as follows.

Definition 2.1. [5] A Generalized quaternion group (Q4n) with n ≥ 2 is a group
with a presentation

< a, b|a2n = e, an = b2, b−1ab = a−1 >

in this group, akb = ba−k and the order of akb is 4.

For example, D6 = {e, a, a2, b, ab, a2b} is a dihedral group with order six. In
this study, we give a function f that defines the adjacency of two vertices as follows.

Definition 2.2. Given H = (V,E) is a graph with V 6= ∅. Define f as follows.

f : V × V → {0, 1}

with

f ((vi, vj))

{
1, if (vi, vj) ∈ E
0, else

One graph that is associated with a finite group is the coprime graph. The
definition of this graph is given in Definition 2.3.

Definition 2.3. [1] Given G a finite group, the coprime graph of G, denoted by
ΓG is the graph with V (ΓG) = G and two distinct vertices x and y are adjacent if
and only if (|x|, |y|) = 1.

And now, we define some numerical invariants of the graph that we analyze
in this study.

Definition 2.4. Let G be a graph. The degree of vertex v in G is denoted as
deg(v) = |A| where A = {vi ∈ V |f ((v, vi)) = 1}.

Definition 2.5. [6] Let G be a graph and c(v) = max{d(v, x)|x ∈ V (G)} is the
eccentricity of G, rad(G) = min{c(v)|v ∈ V (G)} and diam(G) = maks{c(v)|v ∈
V (G)}.
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Definition 2.6. [7] Let G = (V,E) be a graph. The girth of G, denoted by g(G)
is defined as:

g(G) =

{
min{ |CG||CG cycle of G}, G contains cycle

0, else

Where |CG| is the length of the cycle CG.

Definition 2.7. [8] Let G be a graph, the domination number of G, denoted by
γ(G) is the minimum cardinality of the domination set of G. The domination set
is a subset D of V (G) such that every vertex not in D is adjacent to at least one
member of D.

Definition 2.8. [9] Let G be a graph, the independence number of G, denoted by
β(G) is the maximum cardinality of the independence set of G. The independence
set is a subset I of V (G) such that no two vertices in the subset represent an edge
of V (G).

Definition 2.9. [10] Let G be a graph, the metric dimension of G, denoted by
dim(G) is the minimum cardinality of the resolving set of G. The resolving set is
a subset W for a graph G if, for every two distinct vertices u and v of G, there is
an element w in W that resolves u and v.

Definition 2.10. [11] Let G be a graph, complement metric dimension of G, de-
noted by dim(G) is the maximum cardinality of complement resolving a set of G.

Definition 2.11. Let ΓG be the coprime graph of a finite group G and x ∈ V (ΓG).
We can define Ax as Ax = {xi ∈ V (ΓG)|f ((x, xi)) = 1}.

We will discuss numerical invariants of the generalized quaternion group that
is represented in the coprime graph. Given the previous result of the coprime graph
of a generalized quaternion group.

Theorem 2.12. [4] Let Q4n be a generalized quaternion group. If n = 2k then the
coprime graph of Q4n is a complete bipartite graph.

Theorem 2.13. [4] Let Q4n be a generalized quaternion group. If n is prime, then
the coprime graph of Q4n is tripartite graph.

Theorem 2.14. [4] Let Q4n be a generalized quaternion group. If n = pk1
1 p

k2
2 ...p

km
m ,

pi 6= 2, pi 6= pj for each i 6= j, pi a prime number then the coprime graph of Q4n is
m+ 2 partite graph.
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Theorem 2.15. [4] Let Q4n be a generalized quaternion group. If n = pk1
1 p

k2
2 ...p

km
m ,

p1 = 2, pi are distinct prime numbers then the coprime graph of Q4n is m+1 partite
graph.

We also give the following theorem that we need to prove some numerical
invariants of the coprime graph of a finite group.

Theorem 2.16. Let (G, ∗) be a finite group, |G| = n = pk1
1 p

k2
2 ...p

km
m and ΓG be

the coprime graph of G. For some x, y ∈ V (ΓG) with x 6= y, 1 ≤ li, ti ≤ ki,

|x| =
∏j

i=1 p
li
i and |y| =

∏j
i=1 p

ti
i if and only if Ax = Ay.

Proof. Take any x1 ∈ Ax, it means (|x1|, |x|) = 1. Note that |x| =
∏j

i=1 p
li
i

and (|x1|, |x|) = 1, so 6 ∃pi with 1 ≤ i ≤ j such that pi||x1|. Since |y| =
∏j

i=1 p
ti
i

and 6 ∃pi with 1 ≤ i ≤ j which resulted in pi||x1| then (|y|, |x1|) = 1 and hence
f((x1, y)) = 1. Thus, x1 ∈ Ay, which means Ax ⊆ Ay. By a similar approach, we
can prove that Ay ⊆ Ax, hence Ax = Ay

Let G be a finite group with |G| = n = pk1
1 p

k2
2 ...p

km
m and ΓG be the coprime

graph of G. Define A = {1, 2, ...,m} and B,C ⊆ A with B 6= C. If x, y ∈ G,
|x| =

∏
s∈B p

ls
s and |y| =

∏
r∈C p

lr
r , we need to prove Ax 6= Ay. Choose z ∈ Ax

with |z| = pa where a ∈ C, but a /∈ B. Consequently, (|y|, |z|) = pa 6= 1. It means
z /∈ Ay. So, it is complete to prove Ax 6= Ay. �

3. NUMERICAL INVARIANTS OF THE COPRIME GRAPH OF Q4n

In this section, we analyze the numerical invariants of the coprime graph of
Q4n. The first numerical invariants obtained from this study are the degree of each
vertex as stated in Theorem 3.1 and Theorem 3.2.

Theorem 3.1. Let ΓQ4n
be the coprime graph of Q4n. If n = 2k with k ≥ 1 then

deg(e) = 4n− 1 and deg(v) = 1 for each v ∈ Q4n\{e}.

Proof. Let ΓQ4n be the coprime graph of Q4n. Take n = 2k. By Theorem 2.12,
ΓQ4n is a complete bipartite graph with partitions V1 = {e} and V2 = Q4n\{e}, see
the proof in [4] for detail. Thus, f((e, v)) = 1, for each v ∈ Q4n\{e}. By definition,
obtained deg(e) = |V2| = 4n− 1 and deg(v) = |V1| = 1. �

And for n is an odd prime number we have

Theorem 3.2. Let ΓQ4n be the coprime graph of Q4n. If n is an odd prime number,
the degree of each vertex is 1, n, 2n+ 2, or 4n− 1.

Proof. Let ΓQ4n
be the coprime graph of Q4n. Take n for any odd prime number

p. Let S1 = {e}, S2 = {ap, b, ab, ..., a2p−1b}, S3 = {a2, a4, ..., a2p−2}, and S4 =
{a, a3, ..., ap−2, ap+2, ..., a2p−1}. Note that |e| = 1, |x| = 2 or |x| = 4 for each
x ∈ S2, |y| = p for each y ∈ S3, and |z| = 2p for each z ∈ S4. Thus,
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• f((e, v1)) = 1 for each v1 ∈ A1 with A1 = Q4n\{e}, so deg(e) = |A1| = 4n− 1.
• For x ∈ S2, we get f((x, v2)) = 1 if and only if v2 ∈ A2 with A2 = S1 ∪ S3. So,
deg(x) = |A2| = |S1|+ |S3| = n.
• For y ∈ S3, we get f((y, v3)) = 1 if and only if v ∈ A3 with A3 = S1 ∪ S2. So,
deg(y) = |A3| = |S1|+ |S2| = 1 + 2n+ 1 = 2n+ 2.
• For z ∈ S4, we get f((z, v4)) = 1 if and only if v4 ∈ A4 with A4 = S1. So,
deg(z) = |S1| = 1.

�

The next numerical invariants are radius and diameter.

Theorem 3.3. If ΓQ4n
is the coprime graph of a generalized quaternion group with

n ≥ 2, then rad (ΓQ4n) = 1 and diam (ΓQ4n) = 2.

Proof. Let ΓQ4n be the coprime graph of Q4n. Take any n ∈ N and n ≥ 2. From
[4] we know that 1 ≤ d(u, v) ≤ 2 for each u, v ∈ V (ΓQ4n). It means c(v) = 1 or
c(v) = 2 and by definition we get rad (ΓQ4n

) = 1 and diam (ΓQ4n
) = 2. �

The next result obtained from this study is the girth of ΓQ4n as stated in the
two following theorem.

Theorem 3.4. If ΓQ4n is the coprime graph of a generalized quaternion group with
n = 2k then g (ΓQ4n) = 0.

Proof. According to Theorem 2.12, if n = 2k then ΓQ4n
is a complete bipartite

graph. It means, there is no cycle in ΓQ4n . By definition, we get g (ΓQ4n) = 0. �

And for other cases we have

Theorem 3.5. If ΓQ4n
is the coprime graph of a generalized quaternion group with

n 6= 2k and n > 2 then g (ΓQ4n
) = 3.

Proof. Let ΓQ4n is the coprime graph of a generalized quaternion group Q4n.
Take n ∈ N with n > 2 and n 6= 2k. There are v1, v2 ∈ V (ΓQ4n

) with |v1| = p,
p an odd prime number and |v2| = 2. So, we get a cycle with length 3 which is
e− v1 − v2 − v1. It is complete to prove g (ΓQ4n) = 3. �

The domination number is one of the numerical invariants of the graph. The
domination number of ΓQ4n

is always the same for all n ≥ 2. This property is
stated in Theorem 3.6.

Theorem 3.6. If ΓQ4n
be the coprime graph of a generalized quaternion then

γ (ΓQ4n) = 1 for each n ≥ 2.

Proof. Let D = {e} and D be the domination set because e is adjacent to other
vertices in ΓQ4n . So, γ (ΓQ4n) = |D| = 1. �

The next numerical invariant is the independence number of the graph. This
property is stated in four following Theorem.
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Theorem 3.7. Let ΓQ4n
be the coprime graph of a generalized quaternion group.

If n = 2k then β (ΓQ4n
) = 4n− 1.

Proof. Let ΓQ4n
be the coprime graph of a generalized quaternion group with

n = 2k. By Theorem 2.12, ΓQ4n
is a complete bipartite graph that is a star

graph. It means there are two partitions and these partitions are independent
sets, V1 = {e} and V2 = Q4n\{e}. Now, suppose that there is independence set
I with |Q4n| ≥ |I| > |V2|. So, I must equal to Q4n and f((e, v)) = 1 for any
v ∈ Q4n\{e}. It is a contradiction and it means V2 is an independence set with
maximum cardinality. Finally, we get β (Q4n) = |V2| = 4n− 1. �

And for case n is an odd prime we have

Theorem 3.8. Let Q4n be a generalized quaternion group, n = p, p an odd prime
number, then β (ΓQ4n

) = 3n.

Proof. Let ΓQ4n
be the coprime graph of Q4n. Where n is an arbitrary odd prime

number. Define I = {aj |j = 1, 3, ..., 2n − 1} ∪ {aib|i = 0, 1, 2, ..., 2n − 1}. Note
that |v| = 2q, q ∈ N, ∀v ∈ I. Thus, ∀vi, vj ∈ I it is valid that (|vi|, |vj |) 6= 1 which
resulted in f((vi, vj)) = 0. So, I is the independence set of ΓQ4n

. And we need to
prove that there is no independence set of ΓQ4n

with condition |I ′| > |I| = 3n. If
there is I ′, we can find v ∈ I ′, but v /∈ I, it means |v| = 1 or |v| = p. Consequently,
there is u ∈ I ∩ I ′ with condition (|u|, |v|) = 1 which means f((u, v)) = 1. It is a
contradiction with I ′ independence set of ΓQ4n

. So, β (ΓQ4n
) = |I| = 3n. �

And for a more general case, when n is an odd

Theorem 3.9. Let ΓQ4n
be the coprime graph of Q4n. If n = pk1

1 p
k2
2 ...p

km
m , pi 6= pj,

i 6= j, pi an odd prime number, then β (ΓQ4n) = 3n.

Proof. Let ΓQ4n
be the coprime graph of Q4n. Take n = pk1

1 p
k2
2 ...p

km
m , pi 6= 2, pi 6=

pj , i 6= j, pi an odd prime number. Define I = I1∪I2 with I1 = {a2l−1|l = 1, 2, ..., n}
and I2 = {aib|i = 0, 1, 2, ..., 2n − 1}. Take a2l−1 ∈ I1, we get |a2l−1| = 2z1 with
z1 ∈ N and ∀aib ∈ I2 we get |aib| = 4. Thus, ∀u, v ∈ I we get (|u|, |v|) = 2z2 6= 1
which shows that f((u, v)) = 0. So, I is an independence set. Suppose that I ′ is
an independence set with |I ′| > |I| = 3n. We can find v1 ∈ I ′ and v1 /∈ I, it means
|v1| 6= 2z3, ∀z3 ∈ Z. Because of |I ′| > 3n then |I ∩ I ′| ≥ 2n + 1. Consequently,
∃v2 ∈ I ∩ I ′ with v2 = aib with i ∈ {0, 1, ..., 2n − 1}, it means |v2| = 4. Thus,
(|v1|, |v2|) = 1 or f((v1, v2)) = 1. It is a contradiction with I ′ is independence set.
So, β (ΓQ4n

) = |I| = 3n. �

And for a more general result

Theorem 3.10. If ΓQ4n be the coprime graph of Q4n. If n = pk1
1 p

k2
2 ...p

km
m , p1 = 2,

pi 6= pj, i 6= j then β (ΓQ4n
) = 4n− n

2k1
.

Proof. Let ΓQ4n
be the coprime graph of Q4n. Take n = pk1

1 p
k2
2 ...p

km
m , p1 = 2,

pi 6= pj , i 6= j. Define I = I1 ∪ I2 ∪ I3 with I1 = {a2l−1|l = 1, 2, ..., n}, I2 = {a2l|l =
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1, 2, ..., n − 1}\{a2k1+1q|q = 1, 2, ..., n
2k1
− 1}, and I3 = {aib|i = 0, 1, 2, ..., 2n − 1}.

For any v ∈ I we get |v| = 2z1, z1 ∈ N. Consequently, ∀u, v ∈ I we get (|u|, |v|) =
2z2 6= 1. Thus I is an independence set. And now, we need to prove that there is
no I ′ as the independence set of ΓQ4n with condition |I ′| > |I|. Suppose that there
is I ′ with this condition, then ∃v1 ∈ I ′ and v1 /∈ I, It means |v1| 6= 2z3, ∀z3 ∈ Z.
Because of |I ′| > |I| then |I ∩ I ′| ≥ 4n− n

2k1−1 + 1 > 3n. Consequently, ∃v2 ∈ I ∩ I ′
where v2 = aib and |v2| = 4. Those, we get (|v1|, |v2|) = 1 or f((v1, v2)) = 1. It is a
contradiction. So, β (ΓQ4n

) = |I| = |I1|+ |I2|+ |I3| = n+(n−1)−
(

n
2k1
− 1
)

+2n =
4n− n

2k1
. �

Two of the numerical invariants of the graph that are defined based on the
metric concept are the metric dimension and the complement metric dimension.
In this study, we find the metric dimension and complement metric dimension of
ΓQ4n

.

Theorem 3.11. Let ΓQ4n
be the coprime graph of Q4n. If n = 2k then dim (ΓQ4n

) =
4n− 2.

Proof. Let ΓQ4n be the coprime graph of Q4n. If n = 2k, k ∈ N, then ΓQ4n

is star graph. Choose W = Q4n\{e, a} = {v1, v2, ..., v4n−2},∀v ∈ W obtained
r(vi|W ) = (d1, d2, ..., d4n−2) with di = 0 and dj = 2 for each i 6= j. So, each
v ∈ W has a distinct representation of W . And then r(e|W ) = (1, 1, ..., 1) and
r(a|W ) = (2, 2, ..., 2). Thus, each vertex of ΓQ4n

has distinct representation to W .
In other words, W is a resolving set of ΓQ4n

.

Suppose that there is W ′ as a resolving set with condition |W ′| < 4n − 2.
There are two distinct vertices v1, v2 ∈ Q4n\{e} and v1, v2 /∈ W ′ which resulted
in r(v1|W ′) = r(v2|W ′). Thus, W ′ is not resolving set and it is complete to
dim (ΓQ4n) = |W | = 4n− 2. �

And for n is an odd prime number

Theorem 3.12. Let ΓQ4n
be the coprime graph of Q4n. If n = p, p an odd prime

number, then dim (ΓQ4n
) = 4n− 4.

Proof. Let ΓQ4n be the coprime graph of Q4n. Let n be any odd prime number.
Choose W = Q4n\{e, a, a2, b}. Note that each v1, v2 ∈ W with v1 6= v2 obtained
r(v1|W ) 6= r(v2|W ). Because of |e| 6= |a| 6= |a2| 6= |b| and the set of prime numbers
that divide the order of e, a, a2, and b are not equal, so by Theorem 2.16 obtained
Ae 6= Aa 6= Aa2 6= Ab. So, r(e|W ) 6= r(a|W ) 6= r(a2|W ) 6= r(b|W ). Thus W is a
resolving set of ΓQ4n .

Suppose that there is W ′ with condition |W ′| < |W | = 4n− 4 as a resolving
set of ΓQ4n

. We can find two distinct vertices u, v /∈ W ′ with |u| = |v|, means
Au = Av and r(u|W ′) = r(v|W ′). Thus, W is a resolving set with minimum
cardinality. In other words, |W”| ≥ 4n− 4 for each W” resolving set of ΓQ4n . So,
dim (ΓQ4n

) = |W | = 4n− 4. �

And for n is an odd number
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Theorem 3.13. Let ΓQ4n
be the coprime graph of Q4n. If n = pk1

1 p
k2
2 ...p

km
m , pi an

odd prime number, pi 6= pj for i 6= j then dim (ΓQ4n) = 4n− 2m+1.

Proof. Let ΓQ4n
be the coprime graph of Q4n. Take n = pk1

1 p
k2
2 ...p

km
m , pi 6=

pj for i 6= j. Define W = Q4n\S with S = {e} ∪ S1 ∪ ... ∪ Sm+1 and St =
{vt1, vt2, ..., vtCm+1

t
} for each 1 ≤ t ≤ m + 1 with |vts| has t distinct prime factor

and there are no two distinct elements in St with t the same prime factor. Thus, |St|
is the total of ways to choose t prime numbers from m+ 1 distinct prime numbers
or |St| = Cm+1

t where Cm
k = m!

(m−k)!k! . Consequently,

|S| = 1 + Cm+1
1 + Cm+1

2 + ...+ Cm+1
m+1 = 2m+1

And now, we need to prove W = Q4n\S is the resolving set. Each v1, v2 ∈W
with v1 6= v2, obtained r(vi|W ) = (d1, d2, ..., d|W |) with di = 0 and dj 6= 0 for
each i 6= j, thus r(v1|W ) 6= r(v2|W ). By Theorem 2.16, each two distinct vertices
u1, u2 ∈ S, we get Au1

6= Au2
which resulted in r(u1|W ) 6= r(u2|W ). Thus,

r(u|W ) 6= r(v|W ) for each u, v ∈ W with u 6= v. In other words, W is a resolving
set of ΓQ4n .

Suppose that W ′ = Q4n\S′ with |S′| > |S| is resolving set of ΓQ4n
. We

can find v5, v6 ∈ S′ with v5 6= v6, but |v5| and |v6| have t the same prime factor.
By Theorem 2.16, obtained Av5 = Av6 and r(v5|W ′) = r(v6|W ′). So, W ′ is not
resolving set and W is resolving set ΓQ4n with minimum cardinality. It is done to
prove dim (ΓQ4n

) = |W | = 4n− 2m+1. �

And for a more general case, by Theorem 3.13 we have the following result.

Corollary 3.14. Let ΓQ4n be the coprime graph of Q4n. If n = pk1
1 p

k2
2 ...p

km
m ,

p1 = 2, pi 6= pj for i 6= j, pi prime number, then dim (ΓQ4n) = 4n− 2m.

Proof. Let ΓQ4n
be the coprime graph of Q4n. Take n = pk1

1 p
k2
2 ...p

km
m , p1 = 2,

pi 6= pj for i 6= j, pi prime number. Note that p1 = 2, so the number of odd
prime number pj is m − 1. Consequently, Theorem 3.13 obtained dim (ΓQ4n

) =

4n− 2(m−1)+1 = 4n− 2m. �

The last theorem explains the complement metric dimension of ΓQ4n
.

Theorem 3.15. If ΓQ4n be the coprime graph of Q4n with n ≥ 2 then dim (ΓQ4n
) =

4n− 2.

Proof. Let ΓQ4n be the coprime graph of Q4n. Choose any natural number n
with n ≥ 2. Choose S = Q4n\{b, ab}, obtained r(b|S) = r(ab|S). So, S is a
complement to resolving a set of Q4n. By definition, it is impossible to find a
complement resolving set with cardinality greater than |V (G)| − 2. Thus, S is
a complement resolving set with maximum cardinality. It is done to prove that
dim (ΓQ4n) = |S| = 4n− 2.
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4. CONCLUSION

Some numerical invariants of the coprime graph of a generalized quaternion
that were obtained from this study are the degree of each vertex is 1, n, 2n + 2,
or 4n − 1, its radius is 1, its diameter is 2, its girth is 0 or 3, its independence
number is 4n−1, 3n, or 4n− n

2k1
, its domination number is 1, its metric dimension

is 4n − 2, 4n − 4, 4n − 2m, or 4n − 2m+1, and its complement metric dimension is
4n− 2.
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