e^* -HOLLOW-LIFTING and COFINITELY e^* -LIFTING MODULES

HIBA R. BAANOON^{1,2}, AND WASAN KHALID¹

¹Mathematics department, College of science, University of Baghdad, Iraq wasan.hasan@sc.uobaghdad.edu.iq ²Mathematics department, Faculty of Education, University of Misan, Iraq

hibabaanoon@uomisan.edu.iq

Abstract. The novel ideas in module M over a ring R are introduced in this study. The first one, a generalization of the e^* -lifting module, is known as e^* -hollow-lifting. The second idea, an inference of e^* -lifting, is known as a cofinite e^* -lifting module. We shall demonstrate some of these ideas' properties.

Key words and Phrases: e^* -Lifting modules, Lifting modules, Hollow-lifting-modules, Cofinitely lifting module, e^* -Cofinitely lifting modules

1. INTRODUCTION

In this work M is a right module over a ring R with identity. E(M) is the injective envelope of M. When S + T = M implies T = M for each $T \leq M$, S is called a small submodule of M, symbolized by $(S \ll M)$. See [8]. If $S \cap T \neq \{0\}$ for each $0 \neq T \leq M$, then S is called an essential submodule of M. See [8] and [7]. In [11], Özcan introduced a new type of submodules which defined as $Z^*(M) = \{a \in M | aR \text{ small in } E(M)\}$. If $Z^*(M) = M$, then M is called cosingular. In [2], Baanoon and Khalid introduced a class of submodules called e^* -essential submodule of M, symbolized by $S \leq_{e^*} M$. In [3], Baanoon and Khalid used e^* -essential submodules to present a new class of submodules, a generalization of a small submodule, called e^* -essential small. If S + T = M implies T = M for each $T \leq_{e^*} M$, S is called an e^* -essential submodule of M symbolized by $S \ll M$. The generalization of the radical submodule was introduced in [3], which is called e^* -radical denoted by, Rad(M) and defined as the intersection of all

316

 e^*

²⁰²⁰ Mathematics Subject Classification: 16D80, 16D99. Received: 16-06-2022, accepted: 10-12-2022.

 e^* -essential maximal submodule of a module M. Equivalently, $Rad(M) = \sum_{e^*} N$. If each proper submodule of M is e^* -essential small, then M is anointed e^* -hollow, where M is a nonzero module. See [3]. If module M has a direct summand T such that $T \leq S$ and $\frac{S}{T} \ll \frac{M}{T}$ for each submodules S, it is said to be lifting. See [5]. Generalization of the lifting module introduced in [4], which is called e^* -lifting, defined as a module M is called e^* -lifting if for any submodule S of M there exists $T \leq S$ with $M = T \oplus T'$ for some $T' \leq M$ and $S \cap T' \ll_{e^*} M$.

As in [14], [10], [9] and [13] we will use e^* -essential and e^* -essential small submodules to present a new generalization of lifting module and e^* -lifting. Namely e^* -hollow-lifting and cofinitely e^* -lifting modules. We will prove the main properties of these concepts.

2. e^* -Hollow-Lifting modules

This section introduces generalizations for the e^* -lifting module with specific properties. The characteristics of e^* -essential small are listed below that appeared in [3].

Lemma 2.1. Suppose M is a module.

- (1) If M is a simple module, then $M \ll_{e^*} M$.
- (2) If $S \ll_{e^*} M$ and $f: M \to U$ is an R-homomorphism, then $f(S) \ll_{e^*} U$.
- (3) The direct sum of two e^* -essential small submosules is e^* -essential small.

The following gives the properties of an e^* -lifting modules which appeared in [4].

Lemma 2.2. The following are similar for a module M.

- (1) M is e^* -lifting.
- (2) There is a decomposition $A = A_1 \oplus A_2$ such that A_1 is a direct summand of M and $A_2 \ll_{e^*} M$ for any submodule A of M.
- (3) There exists $A_1 \leq A$ such that $M = A_1 \oplus A_2$, for some $A_2 \leq M$, and $\frac{A}{A_1} \ll_{e^*} \frac{M}{A_1}$ for every submodule A of M.

Definition 2.3. For a module M. If every submodule S of M with $\frac{M}{S}$ is e^* -hollow, there exists $S_1 \leq S$ such that $M = S_1 \oplus S_2$ for some $S_2 \leq M$ and $S \cap S_2 \ll_{e^*} M$, then M is called e^* -hollow-lifting.

The following describes e^* -hollow-lifting modules in considerable detail.

Theorem 2.4. The following are similar for a module M.

(1) M is e^* -hollow-lifting.

BAANOON AND KHALID

- (2) There is a decomposition $A = A_1 \oplus A_2$ such that A_1 is a direct summand
- of M and A₂ ≪_{e*} M for any submodule A of M with M/A is e*-hollow.
 (3) There is a submodule A₁ ≤ A which a direct summand of M such that A/A₁ ≪_{e*} M/A₁ for any submodule A of M with M/A is e*-hollow.

PROOF. $1 \Rightarrow 2$) Suppose that $A \leq M$ with $\frac{M}{A}$ is e^* -hollow. So there exists a submodule $A_1 \leq A$, such that $A_1 \oplus U = M$ for some submodule U of M and $A \cap U \ll_{e^*} M$. So $A = A \cap M = A \cap (A_1 \oplus U) = A_1 \oplus (A \cap U)$. Therefore, there exists a decomposition $A = A_1 \oplus A_2$ such that A_1 is a direct summand of M and $A \cap U = A_2 \ll_{e^*} M.$

 $2 \Rightarrow 3$) By the hypothesis, there exists $A_1 \leq A$, such that $M = A_1 \oplus U$ for some submodule U of M, $A = A_1 \oplus A_2$, and $A_2 \ll_{e^*} M$. Let $\frac{W}{A_1} \leq_{e^*} \frac{M}{A_1}$ such that $\frac{M}{A_1} = \frac{W}{A_1} + \frac{A}{A_1}$, so $M = W + A = W + A_1 + A_2$. Then by Proposition 2 in [2] $W \leq_{e^*} M$. Also from Proposition 1 in [2], we have $W + A_1 \leq_{e^*} M$ since $W \leq (W + A_1) \leq M$. Now, since $A_2 \ll_{e^*} M$, so $M = W + A_1 = W$. Therefore, $\frac{M}{A_1} = \frac{W}{A_1}$ and $\frac{A}{A_1} \ll_{e^*} \frac{M}{A_1}$.

 $3 \Rightarrow 1$) By the hypothesis, there exists $A_1 \leq A$ such that $A_1 \oplus U = M$ for some submodule U of M, and $\frac{A}{A_1} \ll_{e^*} \frac{M}{A_1}$. So $A = A \cap M = A \cap (A_1 \oplus U) = A_1 \oplus (A \cap U)$, $\frac{M}{A_1} = \frac{A_1 \oplus U}{A_1} \simeq \frac{U}{A_1 \cap U} \simeq U$, and $\frac{A}{A_1} \simeq A \cap U$. So $A \cap U \ll_{e^*} U \leq M$. Therefore, $A \cap U \ll_{e^*} M$ and M is e^* -hollow-lifting. \Box

Examples and Remarks 2.5.

- (1) Every module that doesn't have an e^* -hollow factor is e^* -hollow-lifting.
- (2) Each e^{*}-lifting module is e^{*}-hollow-lifting. The opposite, however, need not always be true. For instance, let M be a non-zero indecomposable module with no e^* -hollow factor. Hence M is e^* -hollow-lifting. Declare that M is not e^* -lifting. Assume M is e^* -lifting and A is a proper submodule of M. Hence there exists a submodule K of M such that $M = K \oplus W$ for some a submodule W of M and $\frac{A}{K} \ll_{e^*} \frac{M}{K}$. As M is indecomposable, K = 0 and hence $A \ll_{e^*} M$. Thus M is e^* -hollow which implies $\frac{M}{A}$ is e^* -hollow, which is a contradiction; therefore, M is not e^* -lifting.
- (3) The \mathbb{Z} -module \mathbb{Z} is not e^* -hollow-lifting. For a submodule $4\mathbb{Z}$, since $\frac{\mathbb{Z}}{4\mathbb{Z}} \simeq \mathbb{Z}_4$ is e^* -hollow, and the only direct summand contains in $4\mathbb{Z}$ is $\{0\}$. $4\mathbb{Z}$ is not e^* -essential small in \mathbb{Z} . See [3].
- (4) Every semisimple module is e^* -hollow-lifting and every e^* -hollow module is e^* -hollow-lifting.

Next, we will see when the e^* -lifting and e^* -hollow-lifting coincide.

Proposition 2.6. Let M_1 and M_2 be e^* -hollow modules. Then the following are equivalent for the module $M = M_1 \oplus M_2$.

i. M is an e^* -lifting module.

318

ii. M is an e^* -hollow-lifting module.

PROOF. $i \Rightarrow ii$) Obvious.

 $ii \Rightarrow i$) Let $A \leq M$. Consider the natural projection homomorphism $\rho_1 : M \to M_1$ and $\rho_2 : M \to M_2$. We have two cases.

Case I: If $\rho_1(A) \neq M_1$ and $\rho_2(A) \neq M_2$, then $\rho_1(A) \ll_{e^*} M_1$ and $\rho_2(A) \ll_{e^*} M_2$ (since M_1 and M_2 are e^* -hollow modules). So by Lemma 2.1, $\rho_1(A) \oplus \rho_2(A) \ll_{e^*} M_1 \oplus M_2 = M$. Claim that $A \subseteq \rho_1(A) \oplus \rho_2(A)$. Let $a \in A$. Then $a \in M = M_1 \oplus M_2$, so $a = m_1 + m_2$ for some $m_1 \in M_1$ and $m_2 \in M_2$. Hence, $\rho_1(a) = m_1$ and $\rho_2(a) = m_2$ implies $a \in \rho_1(A) \oplus \rho_2(A)$. Hence $A \ll_{e^*} M$ by Proposition 1, in [3]. Thus M is e^* -lifting module.

Case II: If $\rho_1(A) = M_1$, then $M = A + M_2$ and $\frac{M}{A} = \frac{A+M_2}{A} = \frac{M_2}{A \cap M_2}$. Since M_2 is e^* -hollow. Hence $\frac{M_2}{A \cap M_2}$ is e^* -hollow see [[3],Corollary 3], so $\frac{M}{A}$ is e^* -hollow see [[3],Proposition 7]. But M is e^* -hollow-lifting, there exists $X \leq A$ such that $M = X \oplus X'$ for some $X' \leq M$, and $\frac{A}{X} \ll_{e^*} \frac{M}{X}$. Thus M is e^* -lifting module. \Box

Recall that if $f(S) \leq S$ for any endomorphism f of a module M, the submodule S of that module is said to be fully invariant. For more details about fully invariant submodule. See [1].

Now, to prove the next proposition, we need the following lemma.

Lemma 2.7. [9] For a module M, if $M = M_1 \oplus M_2$, then $\frac{M}{S} = \frac{S+M_1}{S} \oplus \frac{S+M_2}{S}$ for any fully invariant S of M.

Proposition 2.8. If M is e^* -hollow-lifting, then $\frac{M}{S}$ is an e^* -hollow-lifting module for any fully invariant $S \leq M$.

PROOF. Let $\frac{L}{S} \leq \frac{M}{S}$ such that $\frac{\frac{M}{S}}{\frac{L}{S}} = \frac{M}{L}$ is e^* -hollow. From hypotheses M is e^* -hollow-lifting, there exist $S_1 \leq L$ such that $M = S_1 \oplus S_2$ for some $S_2 \leq M$, and $\frac{L}{S_1} \ll_{e^*} \frac{M}{S_1}$. By lemma 2.7, we have $\frac{M}{S} = \frac{S_1 + S}{S} \oplus \frac{S_2 + S}{S}$. Clearly $S_1 + S \leq L$ and $\frac{S_1 + S}{S} \leq \frac{L}{S}$. So $\frac{\frac{L}{S}}{\frac{S_1 + S}{S}} \simeq \frac{L}{S_1 + S}$ and $\frac{\frac{M}{S}}{\frac{S_1 + S}{S}} \simeq \frac{M}{S_1 + S}$. Let $f : \frac{M}{S_1} \to \frac{M}{S_1 + S}$ be an R-epimorphism defined by $f(m + S_1) = m + S_1 + S$ for each $m \in M$. Hence $f(\frac{L}{S_1}) = \frac{L}{S_1 + S}$. Since $\frac{L}{S_1} \ll_{e^*} \frac{M}{S_1}$ implies that $\frac{L}{S_1 + S} \ll_{e^*} \frac{M}{S_1 + S}$ [Proposition 7, [3]]. Therefore $\frac{M}{S}$ is e^* -hollow-lifting.

A module M is considered a duo if each submodule is fully invariant. See [12].

The following proposition gives a specific condition to make the direct sum of two e^* -hollow-lifting is an e^* -hollow-lifting module.

Proposition 2.9. Assume that $M = S_1 \oplus S_2$ such that S_1 and S_2 are e^* -hollow modules. If M is a duo module, then M is e^* -hollow-lifting.

PROOF. Suppose that $U \leq M$ such that $\frac{M}{U}$ is e^* -hollow. Since M is duo module, then U is fully invariant and so $U = U \cap M = U \cap (S_1 \oplus S_2) = (U \cap S_1) \oplus (U \cap S_2)$.

Since S_1 and S_2 are e^* -hollow modules, then S_1 and S_2 are e^* -hollow-lifting modules and $\frac{S_1}{U \cap S_1}, \frac{S_2}{U \cap S_2}$ are e^* -hollow modules. See Proposition 7, in [3]. Hence there exists $K \leq (U \cap S_1) \leq U$ such that $K \oplus K_1 = S_1$ for some $K_1 \leq S_1$, and $(U \cap S_1) \cap K_1 \ll_{e^*}$ S_1 . Also, there exists $K' \leq (U \cap S_2)$ such that $K' \oplus K'_1 = S_2$ for some $K'_1 \leq S_2$, and $(U \cap S_2) \cap K'_1 \ll_{e^*} S_2$. So $M = S_1 \oplus S_2 = K \oplus K_1 \oplus K' \oplus K'_1 = K \oplus K' \oplus K_1 \oplus K'_1$. It follows that $K \oplus K' \leq U$. By corollary 1 in [3], $U \cap (K_1 \oplus K'_1) = (U \cap S_1) \cap K_1 \oplus$ $(U \cap S_2) \cap K'_1 \ll_{e^*} S_1 \oplus S_2 = M$. Thus, M is e^* -hollow-lifting. \Box

3. Cofinitely e^* -lifting modules

This section is devoted to introduce another generalizations for the e^* -lifting module with some properties. Remember that if the factor module $\frac{M}{S}$ is finitely generated, a submodule S of M is said to be cofinite in M. See [5].

Definition 3.1. For a module M. If every cofinite submodule S of M has a direct summand $S_1 \leq S$ such that $M = S_1 \oplus S_2$ for some $S_2 \leq M$ and $S \cap S_2 \ll_{e^*} M$, then M is said to be cofinitely e^* -lifting.

Examples and Remarks 3.2.

- Eech e^{*}-lifting is a cofinitely e^{*}-lifting module. The opposite, however, need not always be true. For instance, the Z-module Q is cofinitely e^{*}-lifting because Q is the only cofinite submodule, but not e^{*}-lifting [4].
- (2) The Z-module Z is not cofinitely e^{*}-lifting. Because Z/4Z ≃ Z₄, so 4Z is cofinite, but the only direct summand of 4Z is {0} and 4Z is not e^{*}-essential small [3].
- (3) From (1) and (2), we see the submodule of a cofinitely e^{*}-lifting module need not be cofinitely e^{*}-lifting. The Z-module Q is cofinitely e^{*}-lifting, but the submodule Z is not cofinitely e^{*}-lifting.

Theorem 3.3. The following are similar for a module M.

- (1) M is cofinitely e^* -lifting.
- (2) There is a decomposition $A = A_1 \oplus A_2$ such that A_1 is a direct summand of M and $A_2 \ll_{e^*} M$ for any cofinite submodule A of M.
- (3) There is a submodule $A_1 \leq A$ such that $M = A_1 \oplus A_2$ for some $A_2 \leq M$, and $\frac{A}{A_1} \ll_{e^*} \frac{M}{A_1}$ for every cofinite submodule A of M.

PROOF. As in Theorem 2.4.

Next, We think about the following issue: Whenever the submodule, direct summand, and factor modules inherit the cofinitely e^* -lifting condition?

Proposition 3.4. Every cofinite direct summand e^* -essential of a cofinitely e^* -lifting module is cofinitely e^* -lifting.

PROOF. Suppose U is the cofinite direct summand e^* -essential of a module M where M is cofinitely e^* -lifting. Then $M = U \oplus T$, for some $T \leq M$, $U \leq_{e^*} M$ and $\frac{M}{U}$ is finitely generated. Let S be a cofinite submodule of U. Then $\frac{U}{S}$ is finitely generated. Now M = U + (T + S) and by the modular law $U \cap (T \oplus S) = S$. Hence $\frac{M}{S} = \frac{U}{S} \oplus \frac{T \oplus S}{S}$. By the first isomorphism theorem we have $\frac{T \oplus S}{S} \simeq \frac{T}{T \cap S} = \frac{T}{\{0\}} \simeq T$ and $\frac{M}{U} = \frac{U+T}{U} \simeq \frac{T}{U \cap T} \simeq T$. So $\frac{M}{U} \simeq \frac{T \oplus S}{S}$ and $\frac{T \oplus S}{S}$ is finitely generated. Hence $\frac{M}{S}$ is finitely generated and S is a cofinite submodule in M. Since M is cofinitely e^* -lifting, there exists $Y \leq S$ such that $M = Y \oplus Y'$ for some $Y' \leq M$ and $S \cap Y' \ll_{e^*} M$. So $U = U \cap M = U \cap (Y \oplus Y') = Y \oplus (Y' \cap U)$. Claim that $S \cap Y' \cap U \ll_{e^*} U$, since $S \cap Y' \cap U = S \cap Y' \ll_{e^*} M$, $S \cap Y' \cap U \leq U \leq M$, and U is an e^* -essential direct summand of M by proposition 2 in [3], we have $S \cap Y' \cap U \ll_{e^*} U$. Therefore, U is a cofinitely e^* -lifting module.

Theorem 3.5. If M is a cofinitely e^* -lifting module, then $\frac{M}{S}$ is cofinitely e^* -lifting for any fully invariant submodule S of M.

PROOF. Let $\frac{U}{S}$ be the cofinite submodule of $\frac{M}{S}$. Then U is a cofinite submdule of M since $\frac{M}{S} \simeq \frac{M}{U}$ is finitely generated. Since M is cofinitely e^* -lifting, there exist $Y \leq U$ such that $M = Y \oplus Y'$ for some $Y' \leq M$, and $\frac{U}{Y} \ll_{e^*} \frac{M}{Y}$. Now, by Lemma 2.7. $\frac{M}{S} = \frac{Y+S}{S} \oplus \frac{Y'+S}{S}$ with $Y + S \leq U$ and $\frac{Y+S}{S} \leq \frac{U}{S}$. So $\frac{\frac{U}{S}}{\frac{Y+S}{S}} \simeq \frac{U}{Y+S}$ and $\frac{\frac{M}{S}}{\frac{Y+S}{S}} \simeq \frac{M}{Y+S}$, since $\frac{U}{Y} \ll_{e^*} \frac{M}{Y}$ by Proposition 7, in [3] implies $\frac{U}{Y+S} \ll_{e^*} \frac{M}{Y+S}$. Therefore, $\frac{M}{S}$ is cofinitely e^* -lifting.

Corollary 3.6. Let M be a cofinitely e^* -lifting module. Then $\frac{M}{\operatorname{Rad}(M)}$ is cofinitely e^* -lifting module.

If the total of two direct summands of a module M is likewise a direct summand of that module, that module is said to have the summand sum property. See [6].

Proposition 3.7. Let S be a direct summand of M and M be a cofinitely e^* -lifting module. If M possesses the summand sum property, then $\frac{M}{S}$ is cofinitely e^* -lifting. PROOF. Assume that $\frac{U}{S}$ is the cofinite submodule of $\frac{M}{S}$. So U is a cofinite submodule of M since $\frac{\frac{M}{S}}{\frac{U}{S}} \simeq \frac{M}{U}$ is finitely generated. Since M is cofinitely e^* -lifting, there exists $B \leq U$ such that $M = B \oplus B'$, for some $B' \leq M$, and $\frac{U}{B} \ll_{e^*} \frac{M}{B}$. Since M has the summand sum property, B + S is a direct summand of M and $\frac{B+S}{S}$ is a direct summand of $\frac{M}{S}$ with $\frac{B+S}{S} \leq \frac{U}{S}$. So $\frac{\frac{U}{S}}{\frac{B+S}{S}} \simeq \frac{U}{B+S}$ and $\frac{\frac{M}{S}}{\frac{B+S}{S}} \simeq \frac{M}{B+S}$, since $\frac{U}{B} \ll_{e^*} \frac{M}{B}$, by Proposition 7, in [3] implies $\frac{U}{B+S} \ll_{e^*} \frac{M}{B+S}$. Therefore, $\frac{M}{S}$ is cofinitely e^* -lifting.

We now look at whether direct sums inherit the cofinitely e^* -lifting property.

Theorem 3.8. If $M = S_1 \oplus S_2$ is a duo module; if S_1 and S_2 are cofinitely e^* -lifting modules, then M is also a cofinitely e^* -lifting module.

PROOF. Suppose that $U \leq M$ is cofinite. So $\frac{M}{U}$ is finitely generated and $U = U \cap (S_1 \oplus S_2)$. Because M is a duo module, $U = (U \cap S_1) \oplus (U \cap S_2)$. Also by Lemma 2.7, $\frac{M}{U} = \frac{S_1 + U}{U} \oplus \frac{S_2 + U}{U}$. Then $\frac{S_1 + U}{U} \simeq \frac{S_1}{S_1 \cap U}$ and $\frac{S_2 + U}{U} \simeq \frac{S_2}{S_2 \cap U}$ are finitely generated. Hence $U \cap S_i$ is a cofinite submodule of S_i , Since S_i is cofinitely e^* -lifting for i = 1, 2. Then there exists $D_i \leq U \cap S_i \leq U$ such that $S_i = D_i \oplus D'_i$ for some $D'_i \leq S_i$ and $U \cap S_i \cap D'_i = U \cap D'_i \ll_{e^*} S_i$, for i = 1, 2. Hence $M = (D_1 \oplus D'_1) \oplus (D_2 \oplus D'_2) = (D_1 \oplus D_2) \oplus (D'_1 \oplus D'_2)$, $D_1 \oplus D_2 \leq U$. $U \cap (D'_1 \oplus D'_2) = (U \cap D'_1) \oplus (U \cap D'_2) \ll_{e^*} S_1 \oplus S_2 = M$. Therefore, M is cofinitely e^* -lifting.

REFERENCES

- Birkenmeir, G.F., Muller, B.J. and Rizvi, S.T., "Modules in which Every Fully Invariant Submodule is Essential in a Direct Summand", Comm. Alg., 30(2002), 1395-1415.
- [2] Baanoon, H. and Khalid, W., "e*-Essntial submodule", European Journal of Pure and Applied Mathematics, 15 (2022), 224-228.
- [3] Baanoon, H. and Khalid, W., "e*-Essential small submodules and e*-hollow modules", European Journal of Pure and Applied Mathematics, 15 (2022), 478-485.
- [4] Baanoon, H. and Khalid, W., "e*-lifting modules", Missouri Journal of Mathematical Sciences, to appear.
- [5] Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R., "Lifting Modules. Supplements and Projectivity in Module Theory", *Frontiers in Math.* Boston: Birkhauser, (2006).
- [6] Garcia, J.L., "properties of direct summands of modules", Com. Algebra, 17 (1989), 73-92.
- [7] Goodearl, K., "Ring theory: nonsingular rings and modules", CRC. Press, (1976).
- [8] Kasch, F., "Modules and rings", Academic Press., London, (1982).
- [9] Orhan, N., Tütüncü, D. K. and Tribak, R., "On hollow-lifting modules", *Taiwanese Journal of Mathematics*, 11(2007), 545-568.
- [10] Oshiro, K., "Lifting modules, extending modules and their applications to generalized uniserial rings", Hokkaido Math. J., 13 (1984), 339-346.
- [11] Özcan, A. Ç., "Modules with small cyclic submodules in their injective hulls", Comm. Algebra, 30(2002), 1575-1589.
- [12] Özcan, A. Ç., Harnanci, A. and Smith, P. F., "Duo modules", *Glasgow Mathematical Journal*, 48(2006), 533-545.
- [13] Wang, Y. and Wu, D., "On Cofinitely lifting modules", Algebra Colloquium, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University, (2010), 659-666.
- [14] Zhou, D. X. and Zhng, X. R., "Small-Essential Submodules and Morita Duality", Southeast Asian Bulletin of Mathematics, (2011), 35-6.