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Abstract. Let R be a commutative ring and S be a multiplicative subset of R. The
S-prime ideal is a generalization of the concept of prime ideal. In this paper, we
completely determine all S-prime and S-maximal ideals of a principal domain. It is
shown that the intersection of any descending chain of S-prime ideals in a principal
domain is an S-prime ideal, also the S-radical is investigated.
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1. Introduction

Throughout this paper all rings are commutative with identity # 0. Let R
be a commutative ring and S be a multiplicative subset of R. Recently, Sevim et
al. [11], studied the concept of S-prime ideal which is a generalization of prime
ideal and used it to characterize integral domains, certain prime ideals, fields and
S-Noetherian rings. An ideal P with PN S = () is said to be S-prime ideal if there
exists an element s € S such that, whenever a,b € R, if ab € P then sa € P or
sb € P. Note that if S consist of units of R, then the notions of S-prime ideal and
prime ideal coincide. Recall from [4] that an ideal P of R is said to be S-maximal
ideal if PNS = 0 and there exists s € S such that whenever P C Q for some ideal
Q of R, then either sQ C P or QNS # (). The S-radical of an ideal I is defined
by VI ={a € R /sa" € I for some s € S and n € N}. In this paper we study the
concept of S-prime ideal in a principal ideal domain, for instance, we completely
determine all S-prime ideals of a principal ideal domain. In [4], the author showed
that any S-maximal ideal is S-prime. If R is a principal ideal domain, we show
that every non-zero S-prime ideal is S-maximal. Also the S-radical of an ideal is
given.

Recall from [5] that a multiplicative subset S of R is said to be strongly
multiplicative if for each family (s4)aea We have Npea(sqR) NS # 0. In [5], the

2020 Mathematics Subject Classification: 13F10, 13A15, 13E15.
Received: 18-04-2022, accepted: 22-02-2023.

93



94 M. AQALMOUN

author showed that if S is a strongly multiplicative subset, then the intersection
of any chain of S-prime ideals is an S-prime ideal, and in particular, any ideal
disjoint with S is contained in a minimal S-prime ideal. Then the author asked the
following question;

Question: Is the assumption “S strongly multiplicative subset” necessary for the
theorem?

As part of our study, we give a negative answer to this question.

Her, we fix some notations that will be used throughout this paper. If R
is a principal ideal domain. The set of all irreducible ( prime ) elements of R is
denoted by P. For a multiplicative subset S the set Pg is defined by Ps = {p €
P /(p) NS # B}, that is, Pg is the set of all irreducible elements of R that belong
to some element of S. An irreducible element p is in Pg if and only if there exists
s € S and b € R such that s = bp. Note that if S = R\ {0}, then Pg = P.

2. S-prime ideal in principal domain

We start this section by recalling the concept of S-prime ideals of a com-
mutative ring R in order to give the form of all S-prime ideals in principal ideal
domain.

Definition 2.1. Let R be a commutative ring, S be a multiplicative subset of R
and P be an ideal of R disjoint with S. Then P is said to be S-prime ideal if there
exists an s € S such that for all a,b € R with ab € P, we have sa € P or sb € P.

The following result will be frequently used and can be found in [5].

Proposition 2.2. Let R be a commutative ring and S be a multiplicative subset of
R. Let P be an ideal of R. The following statements are equivalent

(1) P is an S-prime ideal of R.
(2) There exists s € S such that (P : s) is a prime ideal of R.

The S-prime ideals of a principal ideal domain are completely determined in
the following result.

Theorem 2.3. Let R be a principal ideal domain and S be a multiplicative subset
of R and let I be an ideal of R. The following statements are equivalent:

(1) I is an S-prime ideal of R,
(2) I =(0) or I = (vp) for some p € P—Pg and v € R such that (v) NS # 0.

Proof. (2) = (1). If I = (0), then I is an S-prime ideal since it is a prime ideal.
Now, let I = (vp) where p € P — Pg and (v) NS # (. There exists an sy € S
and v' € R such that sg = vv’. Let « € (I : s¢), then sy € I so xsyg = avp for
some a € R, therefore sz € (p), hence x € (p) since sy & (p). It follows that
(I :50) € (p). On the other hand, we have psg = v'vp € I, that is p € (I : s¢), so
that (I : so) = (p) is a prime ideal of R. Thus I is an S-prime ideal of R.

(1) = (2). Let I = (a) be a non-zero S-prime ideal of R. Let so € S such that
(I : sp) is a prime ideal of R. Since (0) # I C (I : sg) there exists an irreducible
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element p of R such that (I : so) = (p). As psg € I, we have psg = a'a for some
a’ € R, in particular a’a € (p) so a’ € (p) or a € (p). If a’ € (p), then o’ = a’'p
where @’ € R, that is psg = a’a = aa’p, so that s = a”’a € (a)NS, a contradiction.
Thus a € (p), hence a = vp where v € R. Now psyp = a’a = a’vp, so so = a’v, that
is (v) NS # 0. It follows that I = (vp) and (v) NS # § and p € P — Pg; in fact
if p € Pg then (p) NS # 0, so there is an element s € S such that s = ¢p where
¢ € R. Then clearly ssg = csop € I, which is not compatible with the fact that
INS=0. O

Remark 2.4. (1) If S is a multiplicative subset of a commutative ring R, then
there exists a saturated multiplicative subset S’ of R such that SpecgR =
Specg R (see the appendiz).

(2) If S is a saturated multiplicative subset of a principal ideal domain R. Then
an ideal P is S-prime if and only if P is the zero ideal or P = (sp) where
seS andpelP—Pg.

Example 2.5. Let R =7 and S = {2 /k € N}. Note that Ps = {2}. Let I be a
non-zero S-prime ideal of Z. Then I = (vp) where p is a prime integer and v € Z
such that p # 2 and (v) NS # O that is mv = 2% for some m € Z and k € N. Thus
v = £2! for some l € N. It follows that the S-prime ideals of 7. are the zero ideal
and the ideals of the form (2'p) where p # 2 is a prime integer and | € N.

Lemma 2.6. Let R be a principal ideal domain. Let (I,)nen be a descending chain
of ideals of R. Then I,, stabilize or N, I, = (0).

Proof. Let I = (a) = N, I, and assume that a # 0. If a is invertible, then the chain
stabilize. If @ is not invertible, consider the commutative ring R’ = R/(a). Then
R’ is Noetherian and dim R’ = 0, so R’ is an Artinian ring. Thus I, stabilize (in
R'). There exists N such that for all n > N, I, = Iy, so I,, = Iy. O

Proposition 2.7. Let R be a principal ideal domain. If (Qn)n is a descending
chain of S-prime ideals of R, then N, Q) is an S-prime ideal of R.

Proof. This follows from the previous lemma. O

Theorem 2.8. Let R be a principal ideal domain. Then every ideal which is
disjoint with S is contained in a minimal S-prime ideal.
Proof. Let I be an ideal of R with INS = 0. Let

I'={Q /Q is an S-prime ideal and T C Q}

Note that T' is not empty since I C P for some prime ideal P of R with PN S # (),
which is an S-prime ideal of R. If (@), is a descending chain of S-prime ideals of
R containing I, then by the previous Proposition, Q = N,Q,, is an S-prime ideal
containing /. By applying the Zorn’s lemma, we get the desired results. O

Proposition 2.9. Let R be a principal ideal domain and S be a multiplicative
subset of R. The following statements are equivalent.

(1) S is a strongly multiplicative subset of R.
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(2) S CU(R), where U(R) is the set of invertible elements of R.

Proof. If S C U(R), then S is clearly a strongly multiplicative subset since for
any s € S we have sR = R. Now, assume that S € U(R). Then there exists a
nonzero element s € S which is not invertible. Let p € P such that (s) C (p),
then for any n € N, (s™) C (p™), thus Npen(s™) C Npen(p™) = (0), in particular
Mnen(s™) NS = 0. Thus S is not a strongly multiplicative subset of R. O

Example 2.10. Let p be an irreducible element of a principal ideal domain R
and S = {p™ / n € N}. Then S is not a strongly multiplicative subset since
Nren(p™R) NS = (). But the intersection of a chain of S-prime ideals pf R is an
S-prime ideal of R.

3. S-maximal ideal in principal domain

Definition 3.1. Let R be a commutative ring and S be a multiplicative subset. Let
P be an ideal of R with PN S = (. Then P is said to be an S-mazimal ideal of R
if there exists s € S such that whenever P C Q for some ideal Q of R then either
sQCPor@QnsS #0.

Remark 3.2. Fvery S-mazimal ideal of R is an S-prime ideal of R (see [4]).

Lemma 3.3. Let R be a principal ideal domain and S be a multiplicative subset of
R. Then (0) is an S-maximal ideal of R if and only if Pg =P

Proof. If (0) is an S-maximal ideal of R and p € P then (p)NS # @ since s(p) Z (0),
so p € Pg. Conversely, assume that Ps = P. Let @ = (a) be an ideal of R. If
a =0 then 1(Q) = (0) C (0). If a # 0. Then either @ = R, in this case QN S # 0,

or @ # R, in this case a = pi* --- pi™ where p1, - ,pm € P and nq,--- ,n,, are
positive integers. Since p; € P = Pg there exists «; € R such that a;p; € 5, so
[T, (aipi)™ € (a)NS. Thus QN S # 0. O

Classically, in a principal ideal domain every non-zero prime ideal is a maxi-
mal ideal, it’s S-version is the following result.

Theorem 3.4. Let R be a principal ideal domain. Then every non-zero S-prime
ideal is an S-maximal ideal.

Proof. Let P be a non-zero S-prime ideal of R. Then P = (vp) for some p € P—Pg
and v € R with (v) NS # 0. Let Q = (a) be an ideal of R with P C Q. Since
vp € (a), vp = ba for some b € R. In particular ab € (p), so a € (p) or b € (p).
First case, if a € (p), then a = ap for some o’ € R, so that vp = ba'p, thus
v=>ba'. As (v) NS # 0, there exists t € R such that s = tv = tba’ € S. Therefore
sa = tva'p € (vp). Tt follows that sQ C P.
Second case, if a & (p), then b € (p). So b = V'p for some b’ € R. Hence v = b'a
since vp = ba = V'ap. Thus 0 # (v) NS C (a) N S. It follows that @ NS # 0.

(]
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4. S-radical in principal domain

Definition 4.1. Let R be a commutative ring and S be a multiplicative subset of
R. The S-radical of an ideal I is defined by

VI={a€eR /sa" €1 for somes e S and n € N}

Theorem 4.2. Let R be a principal ideal domain and S be a multiplicative subset
of R. Let I = (a) be a proper ideal of R write a = H;n:l q;-nj H?Zl p;* where q; € Pg
and p; € P —Pg. Then VI = (H?lei).

Proof. Since g; € Pg, there exists a; € R such that ojq; € S. Let n = max(n;),
then T, (o;q)™ (TTeey o)™ € I, thus [, pi € VI, that is ([[, pi) € V1.
Conversely, let # € /I, then sz™ € I for some s € S and n € N. Let b € R
such that sz™ = bH;n=1 qm™ H?zlp;“. Then for each 1 < i < d, sz™ € (p;), since
(p;) NS = 0 and (p;) is a prime ideal of R, we have z™ € (p;), so z € (p;). Thus
zeN (p)= (H;i:1 p;). Tt follows that v/T = (H?=1 Di)- O

5. Appendix

Here we show, to studying the concept of S-prime ideal, we can always assume
that the multiplicative subset S is saturated. So, for a multiplicative subset S of a
commutative ring R, denote S’ the set defined by S’ ={a € R /(a) NS # 0}.

Proposition 5.1. With the previous notations, we have

(1) S C S and S’ is a saturated multiplicative subset.

(2) If I is an ideal of R, then INS =0 if and only if INS' = 0.

(8) If P is an ideal of R, then P is S-prime if and only if P is S’-prime.

(4) If P is an ideal of R, then P is S-mazimal if and only if P is S’-maximal.
(5) If I is an ideal of R, then /T = 3/T.

Proof. (1) Clearly S C S, 0¢ S" and 1 € §'. If a,b € S’, then aa’ € S and
b € S for some o', b’ € R, so (a'b')(ab) € S, that is ab € S’. If ab € &',
then abt € S for some t € R, so a,b e S’.

(2) Clearly, if INS # 0, then INS" # (. If INS" # (), then there exists i € I
such that (i) NS # 0, so ia € S for some a € R. Thus ia € I N S.

(3) If P is an S-prime ideal of R, then it is easy to see that P is also an S’-
prime ideal of R. Conversely, assume that P is an S’-prime ideal of R.
Then (P : ') is a prime ideal for some s' € S’. We have ts’ € S for some
t € R. Now; we show that (P :ts’) = (P : ). If x € (P : ts'), then
ats’ € Pysoat € (P:s'). Sincet & (P :s'), we have z € (P : '), hence
(P:ts') C(P:s). Ifx e (P:s), then s’ € P, hence xts’ € P, thus
x € (P:ts'). It follows that (P : ts’) is a prime ideal of R, therefore P is
an S-prime ideal of R.

(4) If P is an S-maximal ideal. We fix an element s € S as in the definition,
in particular s € 8. T P C Q and QNS =, then QNS =0, so sQ C P.
It follows that P is an S’-maximal ideal of R. Now, assume that @ is an
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S’-maximal ideal and fix s’ € S’ as in the definition. There exits t € R
such that ts' € S. If PC Q with QNS =0, then QNS =0, so s'Q C P,
thus st’'Q C tP C P.

(5) From the definition we have ¥/I C %/I. Let # € /1, then s'z" € I for
some s’ € S" and n € N. There exists t € R such that ts’ € S, so ts'z™ € I,
thus z € V1.

O
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