S-PRIME IDEALS IN PRINCIPAL DOMAIN

Mohamed Aqalmoun¹

¹Department of Mathematics, Higher Normal School, Sidi Mohamed Ben Abdellah University, Fez, Morocco, maqalmoun@yahoo.fr

Abstract. Let R be a commutative ring and S be a multiplicative subset of R. The S-prime ideal is a generalization of the concept of prime ideal. In this paper, we completely determine all S-prime and S-maximal ideals of a principal domain. It is shown that the intersection of any descending chain of S-prime ideals in a principal domain is an S-prime ideal, also the S-radical is investigated.

 $Key\ words\ and\ Phrases:$ Principal domain, $S\mbox{-}prime\ ideal,\ S\mbox{-}maximal\ ideal,\ S\mbox{-}radical.$

1. Introduction

Throughout this paper all rings are commutative with identity $\neq 0$. Let R be a commutative ring and S be a multiplicative subset of R. Recently, Sevim et al. [11], studied the concept of S-prime ideal which is a generalization of prime ideal and used it to characterize integral domains, certain prime ideals, fields and S-Noetherian rings. An ideal P with $P \cap S = \emptyset$ is said to be S-prime ideal if there exists an element $s \in S$ such that, whenever $a, b \in R$, if $ab \in P$ then $sa \in P$ or $sb \in P$. Note that if S consist of units of R, then the notions of S-prime ideal and prime ideal coincide. Recall from [4] that an ideal P of R is said to be S-maximal ideal if $P \cap S = \emptyset$ and there exists $s \in S$ such that whenever $P \subseteq Q$ for some ideal Q of R, then either $sQ \subseteq P$ or $Q \cap S \neq \emptyset$. The S-radical of an ideal I is defined by $\sqrt[S]{I} = \{a \in R \mid sa^n \in I \text{ for some } s \in S \text{ and } n \in \mathbb{N}\}$. In this paper we study the concept of S-prime ideal in a principal ideal domain, for instance, we completely determine all S-prime ideals of a principal ideal domain. In [4], the author showed that any S-maximal ideal is S-prime. If R is a principal ideal domain, we show that every non-zero S-prime ideal is S-maximal. Also the S-radical of an ideal is given.

Recall from [5] that a multiplicative subset S of R is said to be strongly multiplicative if for each family $(s_{\alpha})_{\alpha \in \Lambda}$ we have $\cap_{\alpha \in \Lambda}(s_{\alpha}R) \cap S \neq \emptyset$. In [5], the

²⁰²⁰ Mathematics Subject Classification: 13F10, 13A15, 13E15. Received: 18-04-2022, accepted: 22-02-2023.

⁹³

author showed that if S is a strongly multiplicative subset, then the intersection of any chain of S-prime ideals is an S-prime ideal, and in particular, any ideal disjoint with S is contained in a minimal S-prime ideal. Then the author asked the following question;

Question: Is the assumption "S strongly multiplicative subset" necessary for the theorem?

As part of our study, we give a negative answer to this question.

Her, we fix some notations that will be used throughout this paper. If R is a principal ideal domain. The set of all irreducible (prime) elements of R is denoted by \mathbb{P} . For a multiplicative subset S the set \mathbb{P}_S is defined by $\mathbb{P}_S = \{p \in \mathbb{P} / (p) \cap S \neq \emptyset\}$, that is, \mathbb{P}_S is the set of all irreducible elements of R that belong to some element of S. An irreducible element p is in \mathbb{P}_S if and only if there exists $s \in S$ and $b \in R$ such that s = bp. Note that if $S = R \setminus \{0\}$, then $\mathbb{P}_S = \mathbb{P}$.

2. S-prime ideal in principal domain

We start this section by recalling the concept of S-prime ideals of a commutative ring R in order to give the form of all S-prime ideals in principal ideal domain.

Definition 2.1. Let R be a commutative ring, S be a multiplicative subset of R and P be an ideal of R disjoint with S. Then P is said to be S-prime ideal if there exists an $s \in S$ such that for all $a, b \in R$ with $ab \in P$, we have $sa \in P$ or $sb \in P$.

The following result will be frequently used and can be found in [5].

Proposition 2.2. Let R be a commutative ring and S be a multiplicative subset of R. Let P be an ideal of R. The following statements are equivalent

- (1) P is an S-prime ideal of R.
- (2) There exists $s \in S$ such that (P:s) is a prime ideal of R.

The S-prime ideals of a principal ideal domain are completely determined in the following result.

Theorem 2.3. Let R be a principal ideal domain and S be a multiplicative subset of R and let I be an ideal of R. The following statements are equivalent:

(1) I is an S-prime ideal of R,

(2) I = (0) or I = (vp) for some $p \in \mathbb{P} - \mathbb{P}_S$ and $v \in R$ such that $(v) \cap S \neq \emptyset$.

Proof. (2) \Rightarrow (1). If I = (0), then I is an S-prime ideal since it is a prime ideal. Now, let I = (vp) where $p \in \mathbb{P} - \mathbb{P}_S$ and $(v) \cap S \neq \emptyset$. There exists an $s_0 \in S$ and $v' \in R$ such that $s_0 = vv'$. Let $x \in (I : s_0)$, then $xs_0 \in I$ so $xs_0 = \alpha vp$ for some $\alpha \in R$, therefore $s_0x \in (p)$, hence $x \in (p)$ since $s_0 \notin (p)$. It follows that $(I : s_0) \subseteq (p)$. On the other hand, we have $ps_0 = v'vp \in I$, that is $p \in (I : s_0)$, so that $(I : s_0) = (p)$ is a prime ideal of R. Thus I is an S-prime ideal of R.

 $(1) \Rightarrow (2)$. Let I = (a) be a non-zero S-prime ideal of R. Let $s_0 \in S$ such that $(I:s_0)$ is a prime ideal of R. Since $(0) \neq I \subseteq (I:s_0)$ there exists an irreducible

element p of R such that $(I : s_0) = (p)$. As $ps_0 \in I$, we have $ps_0 = a'a$ for some $a' \in R$, in particular $a'a \in (p)$ so $a' \in (p)$ or $a \in (p)$. If $a' \in (p)$, then a' = a''p where $a'' \in R$, that is $ps_0 = a'a = aa''p$, so that $s_0 = a''a \in (a) \cap S$, a contradiction. Thus $a \in (p)$, hence a = vp where $v \in R$. Now $ps_0 = a'a = a'vp$, so $s_0 = a'v$, that is $(v) \cap S \neq \emptyset$. It follows that I = (vp) and $(v) \cap S \neq \emptyset$ and $p \in \mathbb{P} - \mathbb{P}_S$; in fact if $p \in \mathbb{P}_S$ then $(p) \cap S \neq \emptyset$, so there is an element $s \in S$ such that s = cp where $c \in R$. Then clearly $ss_0 = cs_0p \in I$, which is not compatible with the fact that $I \cap S = \emptyset$.

- **Remark 2.4.** (1) If S is a multiplicative subset of a commutative ring R, then there exists a saturated multiplicative subset S' of R such that $\operatorname{Spec}_S R = \operatorname{Spec}_{S'} R$ (see the appendix).
 - (2) If S is a saturated multiplicative subset of a principal ideal domain R. Then an ideal P is S-prime if and only if P is the zero ideal or P = (sp) where $s \in S$ and $p \in \mathbb{P} - \mathbb{P}_S$.

Example 2.5. Let $R = \mathbb{Z}$ and $S = \{2^k | k \in \mathbb{N}\}$. Note that $\mathbb{P}_S = \{2\}$. Let I be a non-zero S-prime ideal of \mathbb{Z} . Then I = (vp) where p is a prime integer and $v \in \mathbb{Z}$ such that $p \neq 2$ and $(v) \cap S \neq \emptyset$ that is $mv = 2^k$ for some $m \in \mathbb{Z}$ and $k \in \mathbb{N}$. Thus $v = \pm 2^l$ for some $l \in \mathbb{N}$. It follows that the S-prime ideals of \mathbb{Z} are the zero ideal and the ideals of the form $(2^l p)$ where $p \neq 2$ is a prime integer and $l \in \mathbb{N}$.

Lemma 2.6. Let R be a principal ideal domain. Let $(I_n)_{n \in \mathbb{N}}$ be a descending chain of ideals of R. Then I_n stabilize or $\cap_n I_n = (0)$.

Proof. Let $I = (a) = \bigcap_n I_n$ and assume that $a \neq 0$. If a is invertible, then the chain stabilize. If a is not invertible, consider the commutative ring R' = R/(a). Then R' is Noetherian and dim R' = 0, so R' is an Artinian ring. Thus $\overline{I_n}$ stabilize (in R'). There exists N such that for all $n \geq N$, $\overline{I_n} = \overline{I_N}$, so $I_n = I_N$.

Proposition 2.7. Let R be a principal ideal domain. If $(Q_n)_n$ is a descending chain of S-prime ideals of R, then $\cap_n Q_n$ is an S-prime ideal of R.

Proof. This follows from the previous lemma.

Theorem 2.8. Let R be a principal ideal domain. Then every ideal which is disjoint with S is contained in a minimal S-prime ideal.

Proof. Let I be an ideal of R with $I \cap S = \emptyset$. Let

 $\Gamma = \{Q \mid Q \text{ is an } S \text{-prime ideal and } I \subseteq Q\}$

Note that Γ is not empty since $I \subseteq P$ for some prime ideal P of R with $P \cap S \neq \emptyset$, which is an S-prime ideal of R. If $(Q_n)_n$ is a descending chain of S-prime ideals of R containing I, then by the previous Proposition, $Q = \bigcap_n Q_n$ is an S-prime ideal containing I. By applying the Zorn's lemma, we get the desired results. \Box

Proposition 2.9. Let R be a principal ideal domain and S be a multiplicative subset of R. The following statements are equivalent.

(1) S is a strongly multiplicative subset of R.

M. Aqalmoun

(2) $S \subseteq U(R)$, where U(R) is the set of invertible elements of R.

Proof. If $S \subseteq U(R)$, then S is clearly a strongly multiplicative subset since for any $s \in S$ we have sR = R. Now, assume that $S \not\subseteq U(R)$. Then there exists a nonzero element $s \in S$ which is not invertible. Let $p \in \mathbb{P}$ such that $(s) \subset (p)$, then for any $n \in \mathbb{N}, (s^n) \subseteq (p^n)$, thus $\bigcap_{n \in \mathbb{N}} (s^n) \subseteq \bigcap_{n \in \mathbb{N}} (p^n) = (0)$, in particular $\bigcap_{n \in \mathbb{N}} (s^n) \cap S = \emptyset$. Thus S is not a strongly multiplicative subset of R. \Box

Example 2.10. Let p be an irreducible element of a principal ideal domain R and $S = \{p^n \mid n \in \mathbb{N}\}$. Then S is not a strongly multiplicative subset since $\bigcap_{n \in \mathbb{N}} (p^n R) \cap S = \emptyset$. But the intersection of a chain of S-prime ideals pf R is an S-prime ideal of R.

3. S-maximal ideal in principal domain

Definition 3.1. Let R be a commutative ring and S be a multiplicative subset. Let P be an ideal of R with $P \cap S = \emptyset$. Then P is said to be an S-maximal ideal of R if there exists $s \in S$ such that whenever $P \subseteq Q$ for some ideal Q of R then either $sQ \subseteq P$ or $Q \cap S \neq \emptyset$.

Remark 3.2. Every S-maximal ideal of R is an S-prime ideal of R (see [4]).

Lemma 3.3. Let R be a principal ideal domain and S be a multiplicative subset of R. Then (0) is an S-maximal ideal of R if and only if $\mathbb{P}_S = \mathbb{P}$

Proof. If (0) is an S-maximal ideal of R and $p \in \mathbb{P}$ then $(p) \cap S \neq \emptyset$ since $s(p) \not\subseteq (0)$, so $p \in \mathbb{P}_S$. Conversely, assume that $\mathbb{P}_S = \mathbb{P}$. Let Q = (a) be an ideal of R. If a = 0 then $1(Q) = (0) \subseteq (0)$. If $a \neq 0$. Then either Q = R, in this case $Q \cap S \neq \emptyset$, or $Q \neq R$, in this case $a = p_1^{n_1} \cdots p_m^{n_m}$ where $p_1, \cdots, p_m \in \mathbb{P}$ and n_1, \cdots, n_m are positive integers. Since $p_i \in \mathbb{P} = \mathbb{P}_S$ there exists $\alpha_i \in R$ such that $\alpha_i p_i \in S$, so $\prod_{i=1}^m (\alpha_i p_i)^{n_i} \in (a) \cap S$. Thus $Q \cap S \neq \emptyset$.

Classically, in a principal ideal domain every non-zero prime ideal is a maximal ideal, it's S-version is the following result.

Theorem 3.4. Let R be a principal ideal domain. Then every non-zero S-prime ideal is an S-maximal ideal.

Proof. Let P be a non-zero S-prime ideal of R. Then P = (vp) for some $p \in \mathbb{P} - \mathbb{P}_S$ and $v \in R$ with $(v) \cap S \neq \emptyset$. Let Q = (a) be an ideal of R with $P \subseteq Q$. Since $vp \in (a), vp = ba$ for some $b \in R$. In particular $ab \in (p)$, so $a \in (p)$ or $b \in (p)$.

First case, if $a \in (p)$, then a = a'p for some $a' \in R$, so that vp = ba'p, thus v = ba'. As $(v) \cap S \neq \emptyset$, there exists $t \in R$ such that $s = tv = tba' \in S$. Therefore $sa = tva'p \in (vp)$. It follows that $sQ \subseteq P$.

Second case, if $a \notin (p)$, then $b \in (p)$. So b = b'p for some $b' \in R$. Hence v = b'a since vp = ba = b'ap. Thus $\emptyset \neq (v) \cap S \subseteq (a) \cap S$. It follows that $Q \cap S \neq \emptyset$.

4. S-radical in principal domain

Definition 4.1. Let R be a commutative ring and S be a multiplicative subset of R. The S-radical of an ideal I is defined by

 $\sqrt[s]{I} = \{ a \in R \ / sa^n \in I \ for \ some \ s \in S \ and \ n \in \mathbb{N} \}$

Theorem 4.2. Let R be a principal ideal domain and S be a multiplicative subset of R. Let I = (a) be a proper ideal of R write $a = \prod_{j=1}^{m} q_j^{m_j} \prod_{i=1}^{d} p_i^{n_i}$ where $q_j \in \mathbb{P}_S$ and $p_i \in \mathbb{P} - \mathbb{P}_S$. Then $\sqrt[S]{I} = (\prod_{i=1}^{d} p_i)$.

Proof. Since $q_j \in \mathbb{P}_S$, there exists $\alpha_j \in R$ such that $\alpha_j q_j \in S$. Let $n = max(n_i)$, then $\prod_{j=1}^m (\alpha_j q)^{m_i} (\prod_{i=1}^d p_i)^n \in I$, thus $\prod_{i=1}^d p_i \in \sqrt[S]{I}$, that is $(\prod_{i=1}^d p_i) \subseteq \sqrt[S]{I}$. Conversely, let $x \in \sqrt[S]{I}$, then $sx^n \in I$ for some $s \in S$ and $n \in \mathbb{N}$. Let $b \in R$ such that $sx^n = b \prod_{j=1}^m q^{m_i} \prod_{i=1}^d p_i^{n_i}$. Then for each $1 \leq i \leq d$, $sx^n \in (p_i)$, since $(p_i) \cap S = \emptyset$ and (p_i) is a prime ideal of R, we have $x^n \in (p_i)$, so $x \in (p_i)$. Thus $x \in \cap_{i=1}^d (p_i) = (\prod_{i=1}^d p_i)$. It follows that $\sqrt[S]{I} = (\prod_{i=1}^d p_i)$.

5. Appendix

Here we show, to studying the concept of S-prime ideal, we can always assume that the multiplicative subset S is saturated. So, for a multiplicative subset S of a commutative ring R, denote S' the set defined by $S' = \{a \in R / (a) \cap S \neq \emptyset\}$.

Proposition 5.1. With the previous notations, we have

- (1) $S \subseteq S'$ and S' is a saturated multiplicative subset.
- (2) If I is an ideal of R, then $I \cap S = \emptyset$ if and only if $I \cap S' = \emptyset$.
- (3) If P is an ideal of R, then P is S-prime if and only if P is S'-prime.
- (4) If P is an ideal of R, then P is S-maximal if and only if P is S'-maximal.
- (5) If I is an ideal of R, then $\sqrt[S]{I} = \sqrt[S']{I}$.
- Proof. (1) Clearly $S \subseteq S'$, $0 \notin S'$ and $1 \in S'$. If $a, b \in S'$, then $aa' \in S$ and $bb' \in S$ for some $a', b' \in R$, so $(a'b')(ab) \in S$, that is $ab \in S'$. If $ab \in S'$, then $abt \in S$ for some $t \in R$, so $a, b \in S'$.
 - (2) Clearly, if $I \cap S \neq \emptyset$, then $I \cap S' \neq \emptyset$. If $I \cap S' \neq \emptyset$, then there exists $i \in I$ such that $(i) \cap S \neq \emptyset$, so $ia \in S$ for some $a \in R$. Thus $ia \in I \cap S$.
 - (3) If P is an S-prime ideal of R, then it is easy to see that P is also an S'prime ideal of R. Conversely, assume that P is an S'-prime ideal of R. Then (P:s') is a prime ideal for some $s' \in S'$. We have $ts' \in S$ for some $t \in R$. Now; we show that (P:ts') = (P:s'). If $x \in (P:ts')$, then $xts' \in P$, so $xt \in (P:s')$. Since $t \notin (P:s')$, we have $x \in (P:s')$, hence $(P:ts') \subseteq (P:s')$. If $x \in (P:s')$, then $xs' \in P$, hence $xts' \in P$, thus $x \in (P:ts')$. It follows that (P:ts') is a prime ideal of R, therefore P is an S-prime ideal of R.
 - (4) If P is an S-maximal ideal. We fix an element $s \in S$ as in the definition, in particular $s \in S'$. If $P \subseteq Q$ and $Q \cap S' = \emptyset$, then $Q \cap S = \emptyset$, so $sQ \subseteq P$. It follows that P is an S'-maximal ideal of R. Now, assume that Q is an

M. Aqalmoun

S'-maximal ideal and fix $s' \in S'$ as in the definition. There exits $t \in R$ such that $ts' \in S$. If $P \subseteq Q$ with $Q \cap S = \emptyset$, then $Q \cap S' = \emptyset$, so $s'Q \subseteq P$, thus $st'Q \subseteq tP \subseteq P$.

(5) From the definition we have $\sqrt[S]{I} \subseteq \sqrt[S']{I}$. Let $x \in \sqrt[S']{I}$, then $s'x^n \in I$ for some $s' \in S'$ and $n \in \mathbb{N}$. There exists $t \in R$ such that $ts' \in S$, so $ts'x^n \in I$, thus $x \in \sqrt[S]{I}$.

Acknowledgement. The author would like to thank the referee for his/her great efforts in proofreading the manuscript.

REFERENCES

- Anderson, D. D., A note on minimal prime ideals, Proceedings of the AMS. Vol. 122 (1), 1994.
- [2] Anderson, D.D., Dumitrescu, T.: S-Noetherian rings. Commun. Algebr. 30, 44074416 (2002).
- [3] Atiyah, M., McDonald, I. G. (2018). Introduction to Commutative Algebra. Oxford: Addison-Wesley Publishing Company.
- [4] Eda Yldz, Bayram Ali Ersoy, nsal Tekir and Suat Ko (2020): On S-Zariski topology, Communications in Algebra
- [5] Hamed, A., and Malek, A. (2019). S-prime ideals of a commutative ring. Beitrge Zur Algebra Und Geometrie.
- [6] Hochster, M. (1971). The minimal prime spectrum of a commutative ring. Can. J. Math. 23(5):749758. DOI:10.4153/CJM-1971-083-8.
- [7] Lim, J.W.: A note on S-Noetherian domains. Kyungpook Math. J.55, 507514 (2015)
- [8] Liu, Z., On S-Noetherian rings. Arch. Math. (Brno) 43, 5560 (2007)
- [9] McCoy, N.H., Rings and ideals. Carus Math. Monogr. 8, 96107 (1948)
- [10] Ohm, J., Pendleton, R., Rings with Noetherian spectrum. Duke Math. J. 35:631639, (1968).
- [11] Sevim, E. S., Arabaci, T., Tekir, U., Ko, S. (2019). On S-prime submodules. Turk. J. Math. 43(2):10361046.
- [12] Thomas W. Hungerford. On the structure of principal ideal rings. Pacific J. of math., Vol. 25, No. 3, 1968
- [13] Wiegand, R., Wiegand, S. Prime ideals in Noetherian rings. Surv. Trend. Math. 13, 175193 (2010)
- [14] Wiegand, S., Intersections of prime ideals in Noetherian rings. Comm. Algebr. 11, 18531873 (1983)
- [15] O. Zariski and P. Samuel, Commutative Algebra, volume I, Van Nostrand, Princeton, 1960.

98