S-PRIME IDEALS IN PRINCIPAL DOMAIN

MOHAMED AQALMOUN

1Department of Mathematics, Higher Normal School, Sidi Mohamed Ben Abdellah University, Fez, Morocco, maqalmoun@yahoo.fr

Abstract. Let R be a commutative ring and S be a multiplicative subset of R. The S-prime ideal is a generalization of the concept of prime ideal. In this paper, we completely determine all S-prime and S-maximal ideals of a principal domain. It is shown that the intersection of any descending chain of S-prime ideals in a principal domain is an S-prime ideal, also the S-radical is investigated.

Key words and Phrases: Principal domain, S-prime ideal, S-maximal ideal, S-radical.

1. Introduction

Throughout this paper all rings are commutative with identity $\neq 0$. Let R be a commutative ring and S be a multiplicative subset of R. Recently, Sevim et al. [11], studied the concept of S-prime ideal which is a generalization of prime ideal and used it to characterize integral domains, certain prime ideals, fields and S-Noetherian rings. An ideal P with $P \cap S = \emptyset$ is said to be S-prime ideal if there exists an element $s \in S$ such that, whenever $a, b \in R$, if $ab \in P$ then $sa \in P$ or $sb \in P$. Note that if S consist of units of R, then the notions of S-prime ideal and prime ideal coincide. Recall from [4] that an ideal P of R is said to be S-maximal ideal if $P \cap S = \emptyset$ and there exists $s \in S$ such that whenever $P \subseteq Q$ for some ideal Q of R, then either $sQ \subseteq P$ or $Q \cap S \neq \emptyset$. The S-radical of an ideal I is defined by $\sqrt{S} = \{a \in R / sa^n \in I \text{ for some } s \in S \text{ and } n \in \mathbb{N}\}$. In this paper we study the concept of S-prime ideal in a principal ideal domain, for instance, we completely determine all S-prime ideals of a principal ideal domain. In [4], the author showed that any S-maximal ideal is S-prime. If R is a principal ideal domain, we show that every non-zero S-prime ideal is S-maximal. Also the S-radical of an ideal is given.

Recall from [5] that a multiplicative subset S of R is said to be strongly multiplicative if for each family $(s_\alpha)_{\alpha \in \Lambda}$ we have $\cap_{\alpha \in \Lambda} (s_\alpha R) \cap S \neq \emptyset$. In [5], the

2020 Mathematics Subject Classification: 13F10, 13A15, 13E15.

Received: 18-04-2022, accepted: 22-02-2023.
author showed that if \(S \) is a strongly multiplicative subset, then the intersection of any chain of \(S \)-prime ideals is an \(S \)-prime ideal, and in particular, any ideal disjoint with \(S \) is contained in a minimal \(S \)-prime ideal. Then the author asked the following question;

Question: Is the assumption “\(S \) strongly multiplicative subset” necessary for the theorem?

As part of our study, we give a negative answer to this question.

Her, we fix some notations that will be used throughout this paper. If \(R \) is a principal ideal domain. The set of all irreducible (prime) elements of \(R \) is denoted by \(\mathbb{P} \). For a multiplicative subset \(S \) the set \(\mathbb{P}_S \) is defined by \(\mathbb{P}_S = \{ p \in \mathbb{P} / \mathbb{P} \cap S \neq \emptyset \} \), that is, \(\mathbb{P}_S \) is the set of all irreducible elements of \(R \) that belong to some element of \(S \). An irreducible element \(p \) is in \(\mathbb{P}_S \) if and only if there exists \(s \in S \) and \(b \in R \) such that \(s = bp \). Note that if \(S = R \setminus \{ 0 \} \), then \(\mathbb{P}_S = \mathbb{P} \).

2. \(S \)-prime ideal in principal domain

We start this section by recalling the concept of \(S \)-prime ideals of a commutative ring \(R \) in order to give the form of all \(S \)-prime ideals in principal ideal domain.

Definition 2.1. Let \(R \) be a commutative ring, \(S \) be a multiplicative subset of \(R \) and \(P \) be an ideal of \(R \) disjoint with \(S \). Then \(P \) is said to be \(S \)-prime ideal if there exists an \(s \in S \) such that for all \(a, b \in R \) with \(ab \in P \), we have \(sa \in P \) or \(sb \in P \).

The following result will be frequently used and can be found in [5].

Proposition 2.2. Let \(R \) be a commutative ring and \(S \) be a multiplicative subset of \(R \). Let \(P \) be an ideal of \(R \). The following statements are equivalent

1. \(P \) is an \(S \)-prime ideal of \(R \).
2. There exists \(s \in S \) such that \((P : s) \) is a prime ideal of \(R \).

The \(S \)-prime ideals of a principal ideal domain are completely determined in the following result.

Theorem 2.3. Let \(R \) be a principal ideal domain and \(S \) be a multiplicative subset of \(R \) and let \(I \) be an ideal of \(R \). The following statements are equivalent:

1. \(I \) is an \(S \)-prime ideal of \(R \),
2. \(I = (0) \) or \(I = (vp) \) for some \(p \in \mathbb{P} - \mathbb{P}_S \) and \(v \in R \) such that \((v) \cap S \neq \emptyset \).

Proof. (2) \(\Rightarrow \) (1). If \(I = (0) \), then \(I \) is an \(S \)-prime ideal since it is a prime ideal. Now, let \(I = (vp) \) where \(p \in \mathbb{P} - \mathbb{P}_S \) and \((v) \cap S \neq \emptyset \). There exists an \(s_0 \in S \) and \(v' \in R \) such that \(s_0 = vv' \). Let \(x \in (I : s_0) \), then \(xs_0 \in I \) so \(xs_0 = \alpha vp \) for some \(\alpha \in R \), therefore \(s_0x \in (p) \), hence \(x \in (p) \) since \(s_0 \notin (p) \). It follows that \((I : s_0) \subseteq (p) \). On the other hand, we have \(ps_0 = v'vp \in I \), that is \(p \in (I : s_0) \), so that \((I : s_0) = (p) \) is a prime ideal of \(R \). Thus \(I \) is an \(S \)-prime ideal of \(R \).

(1) \(\Rightarrow \) (2). Let \(I = (a) \) be a non-zero \(S \)-prime ideal of \(R \). Let \(s_0 \in S \) such that \((I : s_0) \) is a prime ideal of \(R \). Since \((0) \neq I \subseteq (I : s_0) \) there exists an irreducible
element \(p \) of \(R \) such that \((I : s_0) = (p)\). As \(ps_0 \in I \), we have \(ps_0 = a'a \) for some \(a' \in R \), in particular \(a'a \in (p) \) so \(a' \in (p) \) or \(a \in (p) \). If \(a' \in (p) \), then \(a' = a''p \) where \(a'' \in R \), that is \(ps_0 = a'a = ad''p \), so that \(s_0 = a'a \in (a) \cap S \), a contradiction. Thus \(a \in (p) \), hence \(a = vp \) where \(v \in R \). Now \(ps_0 = a'a = a'vp \), so \(s_0 = a'v \), that is \((v) \cap S \neq \emptyset \). It follows that \(I = (vp) \) and \((v) \cap S \neq \emptyset \) and \(p \in \mathbb{P} - \mathbb{P}_S \); in fact if \(p \in \mathbb{P}_S \) then \((p) \cap S \neq \emptyset \), so there is an element \(s \in S \) such that \(s = cp \) where \(c \in R \). Then clearly \(ss_0 = cs_0p \in I \), which is not compatible with the fact that \(I \cap S = \emptyset \).

\[\square \]

Remark 2.4.
(1) If \(S \) is a multiplicative subset of a commutative ring \(R \), then there exists a saturated multiplicative subset \(S' \) of \(R \) such that \(\text{Spec}_{S} R = \text{Spec}_{S'} R \) (see the appendix).

(2) If \(S \) is a saturated multiplicative subset of a principal ideal domain \(R \). Then an ideal \(P \) is \(S \)-prime if and only if \(P \) is the zero ideal or \(P = (sP) \) where \(s \in S \) and \(p \in \mathbb{P} - \mathbb{P}_S \).

Example 2.5. Let \(R = \mathbb{Z} \) and \(S = \{2^k : k \in \mathbb{N}\} \). Note that \(\mathbb{P}_S = \{2\} \). Let \(I \) be a non-zero \(S \)-prime ideal of \(\mathbb{Z} \). Then \(I = (vp) \) where \(p \) is a prime integer and \(v \in \mathbb{Z} \) such that \(p \neq 2 \) and \((v) \cap S \neq \emptyset \) that is \(mv = 2^k \) for some \(m \in \mathbb{Z} \) and \(k \in \mathbb{N} \). Thus \(v = \pm 2^l \) for some \(l \in \mathbb{N} \). It follows that the \(S \)-prime ideals of \(\mathbb{Z} \) are the zero ideal and the ideals of the form \((2^l p) \) where \(p \neq 2 \) is a prime integer and \(l \in \mathbb{N} \).

Lemma 2.6. Let \(R \) be a principal ideal domain. Let \((I_n)_{n \in \mathbb{N}} \) be a descending chain of ideals of \(R \). Then \(I_n \) stabilize or \(\bigcap_n I_n = (0) \).

Proof. Let \(I = (a) = \bigcap_n I_n \) and assume that \(a \neq 0 \). If \(a \) is invertible, then the chain stabilize. If \(a \) is not invertible, consider the commutative ring \(R' = R/(a) \). Then \(R' \) is Noetherian and \(\dim R' = 0 \), so \(R' \) is an Artinian ring. Thus \(\gamma_n \) stabilize (in \(R' \)). There exists \(N \) such that for all \(n \geq N \), \(\gamma_n = \gamma_N \), so \(I_n = I_N \).

\[\square \]

Proposition 2.7. Let \(R \) be a principal ideal domain. If \((Q_n)_{n \in \mathbb{N}} \) is a descending chain of \(S \)-prime ideals of \(R \), then \(\bigcap_n Q_n \) is an \(S \)-prime ideal of \(R \).

Proof. This follows from the previous lemma.

\[\square \]

Theorem 2.8. Let \(R \) be a principal ideal domain. Then every ideal which is disjoint with \(S \) is contained in a minimal \(S \)-prime ideal.

Proof. Let \(I \) be an ideal of \(R \) with \(I \cap S = \emptyset \). Let

\[\Gamma = \{Q /Q \text{ is an } S \text{-prime ideal and } I \subseteq Q\} \]

Note that \(\Gamma \) is not empty since \(I \subseteq P \) for some prime ideal \(P \) of \(R \) with \(P \cap S \neq \emptyset \), which is an \(S \)-prime ideal of \(R \). If \((Q_n)_{n} \) is a descending chain of \(S \)-prime ideals of \(R \) containing \(I \), then by the previous Proposition, \(Q = \bigcap_n Q_n \) is an \(S \)-prime ideal containing \(I \). By applying the Zorn’s lemma, we get the desired results.

\[\square \]

Proposition 2.9. Let \(R \) be a principal ideal domain and \(S \) be a multiplicative subset of \(R \). The following statements are equivalent.

(1) \(S \) is a strongly multiplicative subset of \(R \).
(2) $S \subseteq U(R)$, where $U(R)$ is the set of invertible elements of R.

Proof. If $S \subseteq U(R)$, then S is clearly a strongly multiplicative subset since for any $s \in S$ we have $sR = R$. Now, assume that $S \not\subseteq U(R)$. Then there exists a nonzero element $s \in S$ which is not invertible. Let $p \in P$ such that $(s) \subseteq (p)$, then for any $n \in \mathbb{N}$, $(s^n) \subseteq (p^n)$, thus $\cap_{n\in\mathbb{N}}(s^n) \subseteq \cap_{n\in\mathbb{N}}(p^n) = (0)$, in particular $\cap_{n\in\mathbb{N}}(s^n) \cap S = \emptyset$. Thus S is not a strongly multiplicative subset of R. \hfill \square

Example 2.10. Let p be an irreducible element of a principal ideal domain R and $S = \{p^n : n \in \mathbb{N}\}$. Then S is not a strongly multiplicative subset since $\cap_{n\in\mathbb{N}}(p^nR) \cap S = \emptyset$. But the intersection of a chain of S-prime ideals pR is an S-prime ideal of R.

3. S-maximal ideal in principal domain

Definition 3.1. Let R be a commutative ring and S be a multiplicative subset. Let P be an ideal of R with $P \cap S = \emptyset$. Then P is said to be an S-maximal ideal of R if there exists $s \in S$ such that whenever $P \subseteq Q$ for some ideal Q of R then either $sQ \subseteq P$ or $Q \cap S \neq \emptyset$.

Remark 3.2. Every S-maximal ideal of R is an S-prime ideal of R (see [4]).

Lemma 3.3. Let R be a principal ideal domain and S be a multiplicative subset of R. Then (0) is an S-maximal ideal of R if and only if $P_S = P$.

Proof. If (0) is an S-maximal ideal of R and $p \in P$ then $(p) \cap S \neq \emptyset$ since $s(p) \not\subseteq (0)$, so $p \in P_S$. Conversely, assume that $P_S = P$. Let $Q = (a)$ be an ideal of R. If $a = 0$ then $1(Q) = (0) \subseteq (0)$. If $a \neq 0$. Then either $Q = R$, in this case $Q \cap S \neq \emptyset$, or $Q \neq R$, in this case $a = p_1^{n_1} \cdots p_m^{n_m}$ where $p_1, \cdots, p_m \in P$ and n_1, \cdots, n_m are positive integers. Since $p_i \in P = P_S$ there exists $\alpha_i \in R$ such that $\alpha_i p_i \in S$, so $\prod_{i=1}^{m}(\alpha_i p_i)^{n_i} \in (a) \cap S$. Thus $Q \cap S \neq \emptyset$. \hfill \square

Classically, in a principal ideal domain every non-zero prime ideal is a maximal ideal, it’s S-version is the following result.

Theorem 3.4. Let R be a principal ideal domain. Then every non-zero S-prime ideal is an S-maximal ideal.

Proof. Let P be a non-zero S-prime ideal of R. Then $P = (vp)$ for some $p \in P - P_S$ and $v \in R$ with $(v) \cap S \neq \emptyset$. Let $Q = (a)$ be an ideal of R with $P \subseteq Q$. Since $vp \in (a)$, $vp = ba$ for some $b \in R$. In particular $ab \in (p)$, so $a \in (p)$ or $b \in (p)$.

First case, if $a \in (p)$, then $a = a'p$ for some $a' \in R$, so that $vp = ba'p$, thus $v = ba'$. As $(v) \cap S \neq \emptyset$, there exists $t \in R$ such that $s = tv = tba' \in S$. Therefore $sa = twa'p \in (vp)$. It follows that $sQ \subseteq P$.

Second case, if $a \not\in (p)$, then $b \in (p)$. So $b = b'p$ for some $b' \in R$. Hence $v = b'a$ since $vp = ba = b'ap$. Thus $\emptyset \neq (v) \cap S \subseteq (a) \cap S$. It follows that $Q \cap S \neq \emptyset$. \hfill \square
4. S-Radical in Principal Domain

Definition 4.1. Let R be a commutative ring and S be a multiplicative subset of R. The S-radical of an ideal I is defined by

$$\sqrt{S}I = \{a \in R \mid sa^n \in I \text{ for some } s \in S \text{ and } n \in \mathbb{N}\}$$

Theorem 4.2. Let R be a principal ideal domain and S be a multiplicative subset of R. Let $I = (a)$ be a proper ideal of R write $a = \prod_{j=1}^{m} q_j^{m_j} \prod_{i=1}^{d} p_i^{n_i}$ where $q_j \in \mathbb{P}_S$ and $p_i \in \mathbb{P} - \mathbb{P}_S$. Then $\sqrt{S}I = (\prod_{i=1}^{d} p_i)$.

Proof. Since $q_j \in \mathbb{P}_S$, there exists $\alpha_j \in R$ such that $\alpha_j q_j \in S$. Let $n = \max(n_i)$, then $\prod_{j=1}^{n} (\alpha_j q_j)^{n_j} (\prod_{i=1}^{d} p_i)^{n_i} \in I$, thus $\prod_{i=1}^{d} p_i \in \sqrt{S}I$, that is $(\prod_{i=1}^{d} p_i) \subseteq \sqrt{S}I$.

Conversely, let $x \in \sqrt{S}I$, then $sx^n \in I$ for some $s \in S$ and $n \in \mathbb{N}$. Let $b \in R$ such that $sx^n = b \prod_{j=1}^{m} q_j^{m_j} \prod_{i=1}^{d} p_i^{n_i}$. Then for each $1 \leq i \leq d$, $sx^n \in (p_i)$, since $(p_i) \cap N = 0$ and (p_i) is a prime ideal of R, we have $x^n \in (p_i)$, so $x \in (p_i)$. Thus $x \in \cap_{i=1}^{d} (p_i) = (\prod_{i=1}^{d} p_i)$. It follows that $\sqrt{S}I = (\prod_{i=1}^{d} p_i)$. \hfill \Box

5. Appendix

Here we show, to studying the concept of S-prime ideal, we can always assume that the multiplicative subset S is saturated. So, for a multiplicative subset S of a commutative ring R, denote S' the set defined by $S' = \{a \in R \mid (a) \cap S \neq \emptyset\}$.

Proposition 5.1. With the previous notations, we have

1. $S \subseteq S'$ and S' is a saturated multiplicative subset.
2. If I is an ideal of R, then $I \cap S = \emptyset$ if and only if $I \cap S' = \emptyset$.
3. If P is an ideal of R, then P is S'-prime if and only if P is S'-prime.
4. If P is an ideal of R, then P is S'-maximal if and only if P is S'-maximal.
5. If I is an ideal of R, then $\sqrt{S}I = \sqrt{S}'.

Proof. (1) Clearly $S \subseteq S'$, $0 \notin S'$ and $1 \in S'$. If $a, b \in S'$, then $aa' \in S$ and $bb' \in S'$ for some $a', b' \in R$, so $(a'b')(ab) \in S$, that is $ab \in S'$. If $ab \in S'$, then $ab \in S$ for some $t \in R$, so $a, b \in S'$.

(2) Clearly, if $I \cap S = \emptyset$, then $I \cap S' = \emptyset$. If $I \cap S' = \emptyset$, then there exists $i \in I$ such that $(i) \cap S' = \emptyset$, so $ia \in S$ for some $a \in R$. Thus $ia \in I \cap S$.

(3) If P is an S'-prime ideal of R, then it is easy to see that P is also an S'-prime ideal of R. Conversely, assume that P is an S'-prime ideal of R. Then $(P : s')$ is a prime ideal for some $s' \in S'$. We have $ts' \in S$ for some $t \in R$. Now we show that $(P : ts') = (P : s')$. If $x \in (P : ts')$, then $xts' \in P$, so $xt \in (P : s')$, since $t \notin (P : s')$, we have $x \in (P : s')$, hence $(P : ts') \subseteq (P : s')$. If $x \in (P : s')$, then $xts' \in P$, so $xt \in (P : s')$. It follows that $(P : ts')$ is a prime ideal of R, therefore P is an S'-prime ideal of R.

(4) If P is an S'-maximal ideal. We fix an element $s \in S$ as in the definition, in particular $s \in S'$. If $P \subseteq Q$ and $Q \cap S' = \emptyset$, then $Q \cap S = \emptyset$, so $sQ \subseteq P$. It follows that P is a S'-maximal ideal of R. Now, assume that Q is an
S'-maximal ideal and fix $s' \in S'$ as in the definition. There exits $t \in R$ such that $ts' \in S$. If $P \subseteq Q$ with $Q \cap S = \emptyset$, then $Q \cap S' = \emptyset$, so $s'Q \subseteq P$, thus $stQ \subseteq tP \subseteq P$.

(5) From the definition we have $\sqrt{I} \subseteq \sqrt{I'}$. Let $x \in \sqrt{I}$, then $s'x^n \in I$ for some $s' \in S'$ and $n \in \mathbb{N}$. There exists $t \in R$ such that $ts' \in S$, so $ts'x^n \in I$, thus $x \in \sqrt{I}$.

Acknowledgement. The author would like to thank the referee for his/her great efforts in proofreading the manuscript.

REFERENCES