n-BOUNDEDNESS AND n-CONTINUITY OF LINEAR OPERATORS

S. Romen Meitei ${ }^{1}$
${ }^{1}$ Department of Mathematics, United College, Chandel, Manipur, India, romenmoirang@gmail.com

Abstract

The concept of n-bounded and n-continuous operators is discussed as an extension of the concept introduced in [12]. The equivalence of three statements on n-continuity and n-boundedness of a linear operator from a normed space into an n-normed space is also proved. This newly introduced concept is proved to be identical to one type of n-continuity introduced in [12].

Key words and Phrases: n-normed space, n-bounded operator, n-continuous operator.

1. INTRODUCTION

Let X be a real linear space of dimension greater than 1 and $\|.,$.$\| be a real valued$ function on $X \times X$ satisfying the following conditions:

$$
\begin{aligned}
& \left(2 N_{1}\right)\|x, y\|=0 \text { if and only if } x \text { and } y \text { are linearly dependent. } \\
& \left(2 N_{2}\right)\|x, y\|=\|y, x\| . \\
& \left(2 N_{3}\right)\|\alpha x, y\|=\mid \alpha\| \| x, y \| \forall x, y \in X \text { and } \alpha \in \mathbb{R} . \\
& \left(2 N_{4}\right)\|x+y, z\| \leq\|x, z\|+\|y, z\| \forall x, y, z \in X .
\end{aligned}
$$

Then, $\|.,$.$\| is called a 2$-norm on X and $(X,\|.,\|$.$) is called a linear 2-normed space.$ 2-norms are non-negative and $\|x, y+\alpha x\|=\|x, y\|$ for every $x, y \in X$ and $\alpha \in \mathbb{R}$.

The concept of 2-normed spaces was initially investigated and developed by Gähler in 1960s and has been extensively developed by Diminnie, Gähler, White and many others $[1,2,13]$.

Let X be a real vector space with $\operatorname{dim} X \geq n$ where n is a positive integer. A real valued function $\|., \ldots,\|:. X^{n} \rightarrow \mathbb{R}$ is called an n-norm on X if the following conditions hold:
(1) $\left\|x_{1}, \ldots, x_{n}\right\|=0$ iff x_{1}, \ldots, x_{n} are linearly dependent.

[^0](2) $\left\|x_{1}, \ldots, x_{n}\right\|$ remains invariant under permutations of x_{1}, \ldots, x_{n}.
(3) $\left\|\alpha x_{1}, x_{2}, \ldots, x_{n}\right\|=|\alpha|\left\|x_{1}, \ldots, x_{n}\right\| \forall x_{1}, \ldots, x_{n} \in X$ and $\alpha \in \mathbb{R}$.
(4) $\left\|x_{0}+x_{1}, x_{2}, \ldots, x_{n}\right\| \leq\left\|x_{0}, \ldots, x_{n}\right\|+\left\|x_{1}, \ldots, x_{n}\right\|$ for all $x_{0}, x_{1}, \ldots, x_{n} \in$ X.

The pair $(X,\|., \ldots,\|$.$) is called an n$-normed space.
Let X be a real vector space with $\operatorname{dim} X \geq n, n$ is a poitive integer and be equipped with an inner product $\langle.,$.$\rangle . Then the standard n$-norm on X is given by

$$
\left\|x_{1}, \ldots, x_{n}\right\|^{\mathrm{S}}=\sqrt{\operatorname{det}\left[\left\langle x_{i}, x_{j}\right\rangle\right]}
$$

A standard example of an n-normed space is $X=\mathbb{R}^{n}$ equipped with the Euclidean n-norm:

$$
\left\|x_{1}, \ldots, x_{n}\right\|^{E}=\operatorname{abs}\left(\left(\left.\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array} \right\rvert\,\right)\right.
$$

where $x_{i}=\left(x_{i 1}, \ldots, x_{i n}\right) \in \mathbb{R}^{n}$ for each $i=1,2, \ldots, n$.
Note that the value of $\left\|x_{1}, \ldots, x_{n}\right\|^{\mathrm{S}}$ represents the volume of n-dimensional parallelepiped spanned by x_{1}, \ldots, x_{n}.

Gähler was the first to develop theories of n-normed spaces in 1960 s $[3,4,5]$ and later, Misiak [10] developed the theory more extensively . Notion of boundedness in 2-normed space was then introduced by White [13].

Gozali et al. also introduced the notion of bounded n-linear functionals in n-normed spaces in [6]. Zofia Lewandowska introduced notions of 2-linear operators on 2-normed sets in [9]. Soenjaya then introduced the notions of continuity and boundedness of n-linear operators in [12].

2. PRELIMINARIES

From the work of Soenjaya in [12], we have the following definitions and theorem.

Let $(X,\|\cdot\|)$ and $(X,\|\cdot, \ldots, \cdot\|)$ be respectively a normed space and an n-normed space.

Definition 2.1. An operator $T:(X,\|\cdot\|) \rightarrow(X,\|., \ldots,\|$.$) is n$-bounded of type- A if there is a constant K such that for all $x_{1}, x_{2}, \ldots, x_{n} \in X$,

$$
\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\| \leq K\left\|x_{1}\right\| \ldots\left\|x_{n}\right\| .
$$

Definition 2.2. If T is an n-bounded operator of type- A, define $\|T\|_{n}^{A}$ by

$$
\begin{gathered}
\|T\|_{n}^{A}=\sup \left\{\frac{\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|}{\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|}\right. \\
\left.: x_{1}, x_{2}, \ldots, x_{n} \in X,\left\|x_{1}\right\| \ldots\left\|x_{n}\right\| \neq 0\right\}
\end{gathered}
$$

Definition 2.3. An operator $T:(X,\|\cdot\|) \rightarrow(X,\|., \ldots,\|$.$) is n$-continuous of type- A at $x \in X$ if for all $\epsilon>0$, there is a $\delta>0$ such that

$$
\begin{gathered}
\left\|T x_{1}-T x, x_{2}-x, \ldots, x_{n}-x\right\|+\left\|x_{1}-x, T x_{2}-T x, \ldots, x_{n}-x\right\|+ \\
\ldots+\left\|x_{1}-x, x_{2}-x, \ldots, T x_{n}-T x\right\|<\epsilon \\
\text { whenever }\left\|x_{1}-x\right\|\left\|x_{2}-x\right\| \ldots\left\|x_{n}-x\right\|<\delta, \text { where } x_{1}, x_{2}, \ldots, x_{n} \in X .
\end{gathered}
$$ T is n-continuous of type-A if it is n-continuous of type-A at each $x \in X$.

Let $(X,\|, \ldots,\|$.$) and (Y,\|., \ldots,\|$.$) be n$-normed spaces.
Definition 2.4. An operator $T:(X,\|., \ldots,\|.) \rightarrow(Y,\|., \ldots,\|$.$) is n$-bounded of type$B$ if there is a constant K such that for all $x_{1}, \cdots, x_{n} \in X$,

$$
\left\|T x_{1}, \cdots, T x_{n}\right\| \leq K\left\|x_{1}, \cdots, x_{n}\right\|
$$

Definition 2.5. If T is an n-bounded of type-B, define $\|T\|_{n}^{B}$ by

$$
\|T\|_{n}^{B}=\sup _{\left\|x_{1}, \cdots, x_{n}\right\| \neq 0} \frac{\left\|T x_{1}, \cdots, T x_{n}\right\|}{\left\|x_{1}, \cdots, x_{n}\right\|}
$$

Definition 2.6. Let $T: X \rightarrow Y$ be an operator. T is n-continuous of type- B at $x \in X$ if for $\epsilon>0$, there is a $\delta>0$ such that

$$
\left\|T x_{1}-T x, T x_{2}-T x, \cdots, T x_{n}-T x\right\|<\epsilon
$$

whenever

$$
\left\|x_{1}-x, x_{2}-x, \cdots, x_{n}-x\right\|<\delta
$$

T is n-continuous of type- B on X if it is n-continuous of type- B at each $x \in X$.
When $n=1$, it is reduced to usual notion of continuity in normed space.
Definition 2.7. An operator $T:(X,\|., \ldots,\|.) \rightarrow(X,\|., \ldots,\|$.$) is n$-bounded of type- C if there is a constant K such that for all $x_{1}, x_{2}, \ldots, x_{n} \in X$,

$$
\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\| \leq K\left\|x_{1}, \ldots, x_{n}\right\|
$$

Definition 2.8. T is an n-bounded operator, define $\|T\|_{n}^{C}$ by

$$
\begin{gathered}
\|T\|_{n}^{C}=\sup \left\{\frac{\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|}{\left\|x_{1}, \ldots, x_{n}\right\|}\right. \\
\left.: x_{1}, x_{2}, \ldots, x_{n} \in X,\left\|x_{1}, \ldots, x_{n}\right\| \neq 0\right\}
\end{gathered}
$$

Definition 2.9. An operator $T:(X,\|., \ldots,\|.) \rightarrow(X,\|\cdot, \ldots,\|$.$) is n$-continuous of type C at $x \in X$ if for all $\epsilon>0$, there is a $\delta>0$ such that $\left\|T x_{1}-T x, x_{2}-x, \ldots, x_{n}-x\right\|+\left\|x_{1}-x, T x_{2}-T x, \ldots, x_{n}-x\right\|+$ $\ldots+\left\|x_{1}-x, x_{2}-x, \ldots, T x_{n}-T x\right\|<\epsilon$ whenever $\left\|x_{1}-x, x_{2}-x, \ldots, x_{n}-x\right\|<\delta$, where $x_{1}, x_{2}, \ldots, x_{n} \in X$. T is n-continuous of type- C if it is n-continuous of type- C at each $x \in X$.

Using this concept, we extend the following works on n-boundedness and n continuity.

3. MAIN RESULTS

In this work, we discuss the notion of n-boundedness and n-continuity of linear operators as an extension of the work of Soenjaya in [12].
We insert a new type of n-continuity by defining an n-bounded operator from a normed space into an n-normed space and duscuss its relationship with the previously defined n-bounded operators in [12].

Let $(X,\|\cdot\|)$ and $(Y,\|., \ldots,\|$.$) be respectively a normed space and an n$-normed space.

Definition 3.1. An operator $T:(X,\|\cdot\|) \rightarrow(Y,\|., \ldots,\|$.$) is n$-bounded of type- D if there is a constant K such that for all $x_{1}, \cdots, x_{n} \in X$,

$$
\left\|T x_{1}, \cdots, T x_{n}\right\| \leq K\left\|x_{1}\right\| \cdots\left\|x_{n}\right\| .
$$

Definition 3.2. If T is n-bounded of type- D, define $\|T\|_{n}^{D}$ by

$$
\|T\|_{n}^{D}=\sup _{x_{i} \in X,\left\|x_{i}\right\| \neq 0} \frac{\left\|T x_{1}, \cdots, T x_{n}\right\|}{\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|} .
$$

Example 3.3. Let X be an inner product space equipped with standard n-norm $\|., \ldots, .\|^{S}$ and $T:(X,\|\cdot\|) \rightarrow\left(X,\|., \ldots, .\|^{S}\right)$ be an operator such that $T x=c x \forall x \in$ X and $c \in \mathbb{R}$.
Then T is n-bounded of type- D.

Example 3.4. Let $X=\mathbb{R}^{2}$ be a normed space equipped with Euclidean 2-norm $\|., .\|^{E}$ and $T:(X,\|\|.) \rightarrow\left(X,\|., .\|^{E}\right)$ be an operator such that $T x_{i}=\left(x_{i 2}, x_{i 1}\right)$, where $x_{i}=\left(x_{i 1}, x_{i 2}\right) \in \mathbb{R}^{2}$ for $i=1,2, \ldots$ and $\left\|x_{i}\right\|=\sqrt{x_{i 1}^{2}+x_{i 2}^{2}}$. Then, T is 2 -bounded of type- D.

Definition 3.5. $T: X \rightarrow Y$ be an operator. T is n-continuous of type- D at $x \in X$ if for given $\epsilon>0$, there exists a $\delta>0$ such that

$$
\left\|T x_{1}-T x, T x_{2}-T x, \cdots, T x_{n}-T x\right\|<\epsilon
$$

whenever $\left\|x_{1}-x\right\|\left\|x_{2}-x\right\| \cdots\left\|x_{n}-x\right\|<\delta$, where $x_{1}, \cdots, x_{n} \in X$.
T is n-continuous of type- D if it is n-continuous at each $x \in X$.
When $n=1$, this notion of n-continuity of type- D becomes the notion of continuity in a normed space.

Example 3.6. The operator T in example 3.3 is n-continuous of type- D

Example 3.7. The operator T in example 3.4 is 2-continuous of type- D

Theorem 3.8. Let $T: X \rightarrow Y$ be a linear operator. Then, the following statements are equivalent.
(1) T is n-continuous of type- D.
(2) T is n-continuous of type- D at $0 \in X$.
(3) T is n-bounded of type- D.

Proof. It is obvious that (1) implies (2).
$(2) \Longrightarrow(3)$: Suppose T is n-continuous of type- D at $0 \in X$. By definition, there is a $\delta>0$ such that

$$
\left\|T u_{1}, \ldots, T u_{2}\right\|<1
$$

whenever

$$
\left\|u_{1}\right\|\left\|u_{2}\right\| \cdots\left\|u_{n}\right\|<\delta
$$

Let $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$.
If $\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\|=0$, at least one of x_{1}, \ldots, x_{n} is 0 . Then by linearity of T, at least one of $T x_{1}, T x_{2}, \ldots, T x_{n}$ is 0 . It implies that $T x_{1}, T x_{2}, \ldots, T x_{n}$ are linearly dependent. Hence, $\left\|T x_{1}, \ldots, T x_{n}\right\|=0$.

If $\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\| \neq 0$, let $u_{i}=\left(\frac{\delta}{4}\right)^{\frac{1}{n}} \frac{x_{i}}{\left\|x_{i}\right\|}, i=1,2, \ldots, n$.

Clearly,

$$
\left\|u_{1}\right\|\left\|u_{2}\right\| \ldots\left\|u_{n}\right\|=\frac{\delta}{4}<\delta
$$

Then, we have

$$
\begin{aligned}
&\left\|T u_{1}, T u_{2}, \ldots, T u_{n}\right\|=\left\|T\left(\frac{\delta}{4}\right)^{\frac{1}{n}} \frac{x_{1}}{\left\|x_{1}\right\|}, T\left(\frac{\delta}{4}\right)^{\frac{1}{n}} \frac{x_{2}}{\left\|x_{2}\right\|}, \ldots, T\left(\frac{\delta}{4}\right)^{\frac{1}{n}} \frac{x_{n}}{\left\|x_{n}\right\|}\right\| \\
&=\frac{\delta}{4} \cdot \frac{1}{\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|} \cdot\left\|T x_{1}, T x_{2}, \ldots, T x_{n}\right\| \\
& \Longrightarrow\left\|T x_{1}, T x_{2}, \ldots, T x_{n}\right\|=\frac{4}{\delta}\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|\left\|T u_{1}, T u_{2}, \ldots, T u_{n}\right\| \\
&<\frac{4}{\delta}\left\|x_{1}\right\| \ldots\left\|x_{n}\right\| \cdot 1 \\
& \Longrightarrow T \text { is } n \text {-bounded of type- } D .
\end{aligned}
$$

$(3) \Longrightarrow(1)$: Suppose T is n-bounded of type- D.
Then for $x \in X$,

$$
\left\|T x_{1}-T x, T x_{2}-T x, \ldots, T x_{n}-T x\right\| \leq\|T\|_{n}^{D}\left\|x_{1}-x\right\| \ldots\left\|x_{n}-x\right\|
$$

Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{1+\|T\|_{n}^{D}}$ with $\left\|x_{1}-x\right\|\left\|x_{2}-x\right\| \ldots\left\|x_{n}-x\right\|<\delta$.
Then,

$$
\begin{aligned}
\left\|T x_{1}-T x, T x_{2}-T x, \ldots, T x_{n}-T x\right\| & \leq\|T\|_{n}^{D}\left\|x_{1}-x\right\| \ldots\left\|x_{n}-x\right\| \\
& <\|T\|_{n}^{D} \cdot \delta \\
& =\|T\|_{n}^{D} \cdot \frac{\epsilon}{1+\|T\|_{n}^{D}} \\
& <\epsilon .
\end{aligned}
$$

Thus, for given $\epsilon>0$, there exists $\delta>0$ such that

$$
\left\|T x_{1}-T x, T x_{2}-T x, \cdots, T x_{n}-T x\right\|<\epsilon
$$

whenever $\left\|x_{1}-x\right\|\left\|x_{2}-x\right\| \cdots\left\|x_{n}-x\right\|<\delta$, where $x_{1}, \cdots, x_{n} \in X$.
Therefore, T is n-continuous of type- D.
This completes the proof.

Proposition 3.9. Let X be a real vector space with dimension $\geq n$, n being a positive integer and be equipped with a norm $\|$.$\| and an n-norm \|., \ldots,$.$\| . Also, Let$ $(Y,\|., \ldots,\|$.$) be an n-normed space and T: X \rightarrow Y$ be a linear operator. If T is n-bounded of both types- B and D, then $\|T\|_{n}^{B}=\|T\|_{n}^{D}$.

PROOF. If T is n-bounded of type B,

$$
\|T\|_{n}^{B}=\sup _{\left\|x_{1}, \cdots, x_{n}\right\| \neq 0} \frac{\left\|T x_{1}, \cdots, T x_{n}\right\|}{\left\|x_{1}, \cdots, x_{n}\right\|} .
$$

If T is n-bounded of type D,

$$
\|T\|_{n}^{D}=\sup _{x_{i} \in X,\left\|x_{i}\right\| \neq 0} \frac{\left\|T x_{1}, \cdots, T x_{n}\right\|}{\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|}
$$

Let $x_{i} \in X$ with $\left\|x_{i}\right\| \neq 0$ for $i=1,2, \ldots, n$.

Define

$$
\begin{aligned}
x_{i} & =\frac{\left\|x_{i}\right\| y_{i}}{\sqrt[n]{\left\|y_{1}, \ldots, y_{n}\right\|}}, y_{i} \in X \text { and }\left\|y_{1}, \ldots, y_{n}\right\| \neq 0 \\
& =\frac{\left\|x_{i}\right\| y_{i}}{\alpha}, \quad \alpha=\sqrt[n]{\left\|y_{1}, \ldots, y_{n}\right\|}
\end{aligned}
$$

Now,

$$
\begin{align*}
\left\|T x_{1}, \ldots, T x_{n}\right\| & =\left\|T\left(\frac{\left\|x_{1}\right\| y_{1}}{\alpha}\right), \ldots, T\left(\frac{\left\|x_{n}\right\| y_{n}}{\alpha}\right)\right\| \\
& =\frac{\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|}{\alpha^{n}}\left\|T y_{1}, \ldots, T y_{n}\right\| \\
\Longrightarrow \frac{\left\|T x_{1}, \ldots, T x_{n}\right\|}{\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|} & =\frac{\left\|T y_{1}, \ldots, T y_{n}\right\|}{\left\|y_{1}, \ldots, y_{n}\right\|} \tag{3.9.1}
\end{align*}
$$

Taking supremum of the right side of (3.9.1) over $\left\{\left(y_{1}, \ldots, y_{n}\right) \in X^{n}:\left\|y_{1}, \ldots, y_{n}\right\| \neq\right.$ $0\}$, we have

$$
\frac{\left\|T x_{1}, \ldots, T x_{n}\right\|}{\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|} \leq\|T\|_{n}^{B}
$$

It is true for all $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ and each $x_{i} \neq 0$.
Therefore,

$$
\begin{gathered}
\sup _{x_{i} \in X,\left\|x_{i}\right\| \neq 0} \frac{\left\|T x_{1}, \ldots, T x_{n}\right\|}{\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|} \leq\|T\|_{n}^{B} \\
\Longrightarrow\|T\|_{n}^{D} \leq\|T\|_{n}^{B} .
\end{gathered}
$$

Again, Taking supremum of the left side of (3.9.1) over $\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}\right.$: $\left.\left\|x_{i}\right\| \neq 0, i=1,2, \ldots, n\right\}$, we have

$$
\|T\|_{n}^{D} \geq \frac{\left\|T y_{1}, \ldots, T y_{n}\right\|}{\left\|y_{1}, \ldots, y_{n}\right\|}
$$

It is true for all $\left(y_{1}, \ldots, y_{n}\right) \in X^{n}$ and $\left\|y_{1}, \ldots, y_{n}\right\| \neq 0$.
Therefore,

$$
\begin{aligned}
& \|T\|_{n}^{D} \geq \sup _{x_{i} \in X,\left\|x_{i}\right\| \neq 0} \frac{\left\|T y_{1}, \ldots, T y_{n}\right\|}{\left\|y_{1}, \ldots, y_{n}\right\|} . \\
\Longrightarrow & \|T\|_{n}^{D} \geq\|T\|_{n}^{B} .
\end{aligned}
$$

This completes the proof.

Proposition 3.10. Let X be an inner product space equipped with standard n norm $\|., \ldots, .\|^{\mathrm{S}}$ and $(Y,\|., \ldots,\|$.$) be an n-normed space. If T: X \rightarrow Y$ is n-bounded of type- B, then T is n-bounded of type- D.

Proof. Since T is n-bounded of type- B,

$$
\left\|T x_{1}, \ldots, T x_{n}\right\| \leq K\left\|x_{1}, \ldots, x_{n}\right\|^{\mathrm{S}} .
$$

But,

$$
\begin{aligned}
\left\|x_{1}, \ldots, x_{n}\right\|^{\mathrm{S}} & =\sqrt{\operatorname{det}\left\langle x_{i}, x_{j}\right\rangle} \\
& \leq \sqrt{\left\|x_{1}\right\|^{2}\left\|x_{2}\right\|^{2} \ldots\left\|x_{n}\right\|^{2}} \\
& \text { (Hadamard's determinant theorem) } \\
& =\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\| .
\end{aligned}
$$

Therefore,

$$
\left\|T x_{1}, \ldots, T x_{n}\right\| \leq K\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\|
$$

$\Longrightarrow T$ is n - bounded of type-D.
This completes the proof.
Proposition 3.11. Let X be a real vector space equipped with a norm $\|$.$\| and an$ n-norm $\|., \ldots,$.$\| . Also, Let T: X \rightarrow X$ be a linear operator. If T is n-bounded of both types- A and C, then $\|T\|_{n}^{A}=\|T\|_{n}^{C}$.

Proof. If T is n-bounded of type- A,

$$
\begin{gathered}
\|T\|_{n}^{A}=\sup \left\{\frac{\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|}{\left\|x_{1}\right\| \ldots x_{n} \|}\right. \\
\left.: x_{1}, x_{2}, \ldots, x_{n} \in X,\left\|x_{1}\right\| \ldots\left\|x_{n}\right\| \neq 0\right\}
\end{gathered}
$$

And, if T is n-bounded of type- C,

$$
\begin{gathered}
\|T\|_{n}^{C}=\sup \left\{\frac{\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|}{\left\|x_{1}, \ldots, x_{n}\right\|}\right. \\
\left.\quad: x_{1}, x_{2}, \ldots, x_{n} \in X,\left\|x_{1}, \ldots, x_{n}\right\| \neq 0\right\}
\end{gathered}
$$

Let $x_{i} \in X$ with $\left\|x_{i}\right\| \neq 0$ for $i=1,2, \ldots, n$.
Define

$$
\begin{aligned}
x_{i} & =\frac{\left\|x_{i}\right\| y_{i}}{\sqrt[n]{\left\|y_{1}, \ldots, y_{n}\right\|}}, y_{i} \in X \text { and }\left\|y_{1}, \ldots, y_{n}\right\| \neq 0 \\
& =\frac{\left\|x_{i}\right\| y_{i}}{\alpha}, \alpha=\sqrt[n]{\left\|y_{1}, \ldots, y_{n}\right\|}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\| \\
& =\left\|T\left(\frac{\left\|x_{1}\right\|}{\alpha} y_{1}\right), \frac{\left\|x_{2}\right\|}{\alpha} y_{2}, \ldots, \frac{\left\|x_{n}\right\|}{\alpha} y_{n}\right\|+\cdots+\left\|\frac{\left\|x_{1}\right\|}{\alpha} y_{1}, \frac{\left\|x_{2}\right\|}{\alpha} y_{2}, \ldots, T\left(\frac{\left\|x_{n}\right\|}{\alpha} y_{n}\right)\right\| \\
& =\frac{\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots . . . x_{n} \|}{\alpha^{n}}\left(\left\|T y_{1}, y_{2}, \ldots, y_{n}\right\|+\left\|y_{1}, T y_{2}, \ldots, y_{n}\right\|+\cdots+\left\|y_{1}, y_{2}, \ldots, T y_{n}\right\|\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|}{\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\|} \\
& \quad=\frac{\left\|T y_{1}, y_{2}, \ldots, y_{n}\right\|+\left\|y_{1}, T y_{2}, \ldots, y_{n}\right\|+\cdots+\left\|y_{1}, y_{2}, \ldots, T y_{n}\right\|}{\left\|y_{1}, \ldots, y_{n}\right\|}
\end{aligned}
$$

Consequently,

$$
\|T\|_{n}^{\mathbf{A}} \geq \frac{\left\|T y_{1}, y_{2}, \ldots, y_{n}\right\|+\left\|y_{1}, T y_{2}, \ldots, y_{n}\right\|+\cdots+\left\|y_{1}, y_{2}, \ldots, T y_{n}\right\|}{\left\|y_{1}, \ldots, y_{n}\right\|}
$$

It is true for all $y_{1}, y_{2}, \ldots, y_{n} \in X$ with $\left\|y_{1}, y_{2}, \ldots, y_{n}\right\| \neq 0$.

Therefore,

$$
\begin{aligned}
& \|T\|_{n}^{\mathbf{A}} \geq \sup \left\{\frac{\left\|T y_{1}, y_{2}, \ldots, y_{n}\right\|+\left\|y_{1}, T y_{2}, \ldots, y_{n}\right\|+\cdots+\left\|y_{1}, y_{2}, \ldots, T y_{n}\right\|}{\left\|y_{1}, \ldots, y_{n}\right\|}\right. \\
& \left.\quad: y_{1}, y_{2}, \ldots, y_{n} \in X,\left\|y_{1}, \ldots, y_{n}\right\| \neq 0\right\} \\
& \Longrightarrow\|T\|_{n}^{\mathrm{A}} \geq\|T\|_{n}^{\mathrm{C}} .
\end{aligned}
$$

Also,

$$
\frac{\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|}{\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\|} \leq\|T\|_{n}^{\mathrm{C}}
$$

It is true for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\| \neq 0$.
Therefore,

$$
\begin{aligned}
& \sup \left\{\frac{\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|}{\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|}\right. \\
& \left.\quad: x_{1}, x_{2}, \ldots, x_{n} \in X,\left\|x_{1}\right\| \ldots\left\|x_{n}\right\| \neq 0\right\} \leq\|T\|_{n}^{\mathrm{C}} \\
& \quad \Longrightarrow\|T\|_{n}^{\mathrm{A}} \leq\|T\|_{n}^{\mathrm{C}} .
\end{aligned}
$$

This completes the proof.

Proposition 3.12. Let X be an inner product space equipped with standard n norm $\|., \ldots,\|^{S}$. If $T: X \rightarrow X$ is n-bounded of type- C, then T is n-bounded of type- A.
proof. $T: X \rightarrow X$ is n-bounded of type-C. It implies that there exists a constant K such that
for all $x_{1}, x_{2}, \ldots, x_{n} \in X$,

$$
\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|^{S}+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|^{S}+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|^{S} \leq K\left\|x_{1}, \ldots, x_{n}\right\|^{S}
$$

But,

$$
\left\|x_{1}, \ldots, x_{n}\right\|^{S}=\sqrt{\operatorname{det}\left\langle x_{i}, x_{j}\right\rangle}
$$

Applying Hadamard inequality,

$$
\left\|x_{1}, \ldots, x_{n}\right\|^{S} \leq\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\|
$$

Therefore, for all $x_{1}, x_{2}, \ldots, x_{n} \in X$,

$$
\left\|T x_{1}, x_{2}, \ldots, x_{n}\right\|^{S}+\left\|x_{1}, T x_{2}, \ldots, x_{n}\right\|^{S}+\cdots+\left\|x_{1}, x_{2}, \ldots, T x_{n}\right\|^{S} \leq K\left\|x_{1}\right\| \ldots\left\|x_{n}\right\| .
$$

It implies T is n-bounded of type-A. This completes the proof.

Acknowledgement. The author would like to thank the referee for the useful comments.

REFERENCES

[1] Diminnie, C., Gähler, S. and White, A., "2-inner product spaces", Demonstratio Math. 6(1973), 525 - 536.
[2] Gähler, S., "Lineare 2-normerte räume", Math. Nachr. 28 (1964), 1-43.
[3] Gähler, S., "Untersuchungen über verallgemeinerte m-metrische räume I", Math. Nachr. 40(1969), 165-189.
[4] Gähler, S., "Untersuchungen über verallgemeinerte m-metrische räume II", Math. Nachr. 40(1969),229-264.
[5] Gähler, S. , "Untersuchungen über verallgemeinerte m-metrische räume III", Math. Nachr. 41(1970), 23-36.
[6] Gozali, S. M. , Gunawan, H. and Neswan, O., "On n-norms and bounded n-linear functionals in a Hilbert space" Ann. Funct. Anal. 1 (2010), 72-79.
[7] Gunawan, H. and Mashadi, "On n-normed spaces" Int. J. Math. Math. Sci. 27 (2001), 631639.
[8] Gunawan, H., "The space of p-summable sequences and its natural n-norms" Bull. Austral. Math. Soc. 64 (2001), 137-147.
[9] Lewandowska, Z., "Bounded 2-linear operators on 2-normed sets" Glasnik MateMaticki 39 (2004), 303-314.
[10] Misiak, A., " n-inner product spaces." Math. Nachr. 140 (1989) 299-319.
[11] Pangalela, Y. E. P. and Gunawan, H., "The n-dual space of p-summabe sequences" Mathematica Bohemica 138(2013), 439-448.
[12] Soenjaya, A. L., "On n-bounded and n-continuous operator in n-normed space" J. Indones. Math. Soc. 18(2012), 45-56.
[13] White, A., "2-Banach spaces." Math. Nachr. 42 (1969), 43-60.

[^0]: 2020 Mathematics Subject Classification: 47A05, 47A30, 46B20, 46C05.
 Received: 15-04-2022, accepted: 28-06-2022.

