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Abstract. The concept of n-bounded and n-continuous operators is discussed as

an extension of the concept introduced in [12]. The equivalence of three statements

on n-continuity and n-boundedness of a linear operator from a normed space into

an n-normed space is also proved. This newly introduced concept is proved to be

identical to one type of n-continuity introduced in [12].

Key words and Phrases: n-normed space, n-bounded operator, n-continuous oper-
ator.

1. INTRODUCTION

Let X be a real linear space of dimension greater than 1 and ‖., .‖ be a real valued
function on X ×X satisfying the following conditions:

(2N1) ‖x, y‖ = 0 if and only if x and y are linearly dependent.
(2N2) ‖x, y‖ = ‖y, x‖.
(2N3) ‖αx, y‖ = |α|‖x, y‖ ∀ x, y ∈ X and α ∈ R.
(2N4) ‖x+ y, z‖ ≤ ‖x, z‖+ ‖y, z‖ ∀ x, y, z ∈ X.

Then, ‖., .‖ is called a 2-norm on X and (X, ‖., .‖) is called a linear 2-normed space.
2-norms are non-negative and ‖x, y + αx‖ = ‖x, y‖ for every x, y ∈ X and α ∈ R.

The concept of 2-normed spaces was initially investigated and developed by
Gähler in 1960s and has been extensively developed by Diminnie, Gähler, White
and many others[1, 2, 13].

Let X be a real vector space with dimX ≥ n where n is a positive integer.
A real valued function ‖., ..., .‖ : Xn → R is called an n-norm on X if the following
conditions hold:

(1) ‖x1, . . . , xn‖ = 0 iff x1, . . . , xn are linearly dependent.
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(2) ‖x1, . . . , xn‖ remains invariant under permutations of x1, . . . , xn.
(3) ‖αx1, x2, . . . , xn‖ = |α|‖x1, . . . , xn‖ ∀x1, . . . , xn ∈ X and α ∈ R.
(4) ‖x0 + x1, x2, . . . , xn‖ ≤ ‖x0, . . . , xn‖+ ‖x1, . . . , xn‖ for all x0, x1, . . . , xn ∈

X.

The pair (X, ‖., . . . , .‖) is called an n-normed space.

Let X be a real vector space with dimX ≥ n, n is a poitive integer and be equipped
with an inner product 〈., .〉.Then the standard n-norm on X is given by

‖x1, . . . , xn‖S =
√

det[〈xi, xj〉].

A standard example of an n-normed space is X = Rn equipped with the Euclidean
n-norm:

‖x1, . . . , xn‖E = abs


∣∣∣∣∣∣∣
x11 · · · x1n

...
. . .

...
xn1 · · · xnn

∣∣∣∣∣∣∣


where xi = (xi1, ..., xin) ∈ Rn for each i = 1, 2, ..., n.

Note that the value of ‖x1, ..., xn‖S represents the volume of n-dimensional
parallelepiped spanned by x1, ..., xn.

Gähler was the first to develop theories of n-normed spaces in 1960s [3, 4, 5]
and later, Misiak [10] developed the theory more extensively . Notion of bounded-
ness in 2-normed space was then introduced by White [13].

Gozali et al. also introduced the notion of bounded n-linear functionals in
n-normed spaces in [6]. Zofia Lewandowska introduced notions of 2-linear operators
on 2-normed sets in [9]. Soenjaya then introduced the notions of continuity and
boundedness of n-linear operators in [12].

2. PRELIMINARIES

From the work of Soenjaya in [12], we have the following definitions and the-
orem.

Let (X, ‖.‖) and (X, ‖., ..., .‖) be respectively a normed space and an n-normed
space.

Definition 2.1. An operator T : (X, ‖.‖)→ (X, ‖., ..., .‖) is n-bounded of type-A if
there is a constant K such that for all x1, x2, ..., xn ∈ X,

‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖ ≤ K‖x1‖...‖xn‖.
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Definition 2.2. If T is an n-bounded operator of type-A, define ‖T‖An by

‖T‖An = sup{‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖
‖x1‖...‖xn‖

: x1, x2, ..., xn ∈ X, ‖x1‖...‖xn‖ 6= 0}

Definition 2.3. An operator T : (X, ‖.‖)→ (X, ‖., ..., .‖) is n-continuous of type-A
at x ∈ X if for all ε > 0, there is a δ > 0 such that

‖Tx1 − Tx, x2 − x, ..., xn − x‖+ ‖x1 − x, Tx2 − Tx, ..., xn − x‖+
...+ ‖x1 − x, x2 − x, ..., Txn − Tx‖ < ε

whenever ‖x1 − x‖‖x2 − x‖...‖xn − x‖ < δ, where x1, x2, ..., xn ∈ X.

T is n-continuous of type-A if it is n-continuous of type-A at each x ∈ X.

Let (X, ‖., ..., .‖) and (Y, ‖., ..., .‖) be n-normed spaces.

Definition 2.4. An operator T : (X, ‖., ..., .‖)→ (Y, ‖., ..., .‖) is n-bounded of type-
B if there is a constant K such that for all x1, · · · , xn ∈ X,

‖Tx1, · · · , Txn‖ ≤ K‖x1, · · · , xn‖.

Definition 2.5. If T is an n-bounded of type-B, define ‖T‖Bn by

‖T‖Bn = sup
‖x1,··· ,xn‖6=0

‖Tx1, · · · , Txn‖
‖x1, · · · , xn‖

Definition 2.6. Let T : X → Y be an operator. T is n-continuous of type-B at
x ∈ X if for ε > 0, there is a δ > 0 such that

‖Tx1 − Tx, Tx2 − Tx, · · · , Txn − Tx‖ < ε

whenever
‖x1 − x, x2 − x, · · · , xn − x‖ < δ

.

T is n-continuous of type-B onX if it is n-continuous of type-B at each x ∈ X.

When n = 1, it is reduced to usual notion of continuity in normed space.

Definition 2.7. An operator T : (X, ‖., ..., .‖) → (X, ‖., ..., .‖) is n-bounded of
type-C if there is a constant K such that for all x1, x2, ..., xn ∈ X,
‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖ ≤ K‖x1, ..., xn‖.



150 S. Romen Meitei

Definition 2.8. T is an n-bounded operator, define ‖T‖Cn by

‖T‖Cn = sup{‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖
‖x1, ..., xn‖

: x1, x2, ..., xn ∈ X, ‖x1, ..., xn‖ 6= 0}

Definition 2.9. An operator T : (X, ‖., ..., .‖) → (X, ‖., ..., .‖) is n-continuous of
type C at x ∈ X if for all ε > 0, there is a δ > 0 such that
‖Tx1 − Tx, x2 − x, ..., xn − x‖+ ‖x1 − x, Tx2 − Tx, ..., xn − x‖+

...+ ‖x1 − x, x2 − x, ..., Txn − Tx‖ < ε
whenever ‖x1 − x, x2 − x, ..., xn − x‖ < δ, where x1, x2, ..., xn ∈ X.
T is n-continuous of type-C if it is n-continuous of type-C at each x ∈ X.

Using this concept, we extend the following works on n-boundedness and n
continuity.

3. MAIN RESULTS

In this work, we discuss the notion of n-boundedness and n-continuity of lin-
ear operators as an extension of the work of Soenjaya in [12].
We insert a new type of n-continuity by defining an n-bounded operator from a
normed space into an n-normed space and duscuss its relationship with the previ-
ously defined n-bounded operators in [12].

Let (X, ‖.‖) and (Y, ‖., ..., .‖) be respectively a normed space and an n-normed
space.

Definition 3.1. An operator T : (X, ‖.‖)→ (Y, ‖., ..., .‖) is n-bounded of type-D if
there is a constant K such that for all x1, · · · , xn ∈ X,

‖Tx1, · · · , Txn‖ ≤ K‖x1‖ · · · ‖xn‖.

Definition 3.2. If T is n-bounded of type-D, define ‖T‖Dn by

‖T‖Dn = sup
xi∈X,‖xi‖6=0

‖Tx1, · · · , Txn‖
‖x1‖ · · · ‖xn‖

.

Example 3.3. Let X be an inner product space equipped with standard n-norm
‖., ..., .‖S and T : (X, ‖.‖)→ (X, ‖., ..., .‖S)be an operator such that Tx = cx ∀ x ∈
X and c ∈ R.
Then T is n-bounded of type-D.
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Example 3.4. Let X = R2 be a normed space equipped with Euclidean 2-norm
‖., .‖E and T : (X, ‖.‖) → (X, ‖., .‖E) be an operator such that Txi = (xi2, xi1),

where xi = (xi1, xi2) ∈ R2 for i = 1, 2, ... and ‖xi‖ =
√
x2i1 + x2i2. Then, T is

2-bounded of type-D.

Definition 3.5. T : X → Y be an operator. T is n-continuous of type-D at x ∈ X
if for given ε > 0, there exists a δ > 0 such that

‖Tx1 − Tx, Tx2 − Tx, · · · , Txn − Tx‖ < ε

whenever ‖x1 − x‖‖x2 − x‖ · · · ‖xn − x‖ < δ, where x1, · · · , xn ∈ X.

T is n-continuous of type-D if it is n-continuous at each x ∈ X.

When n = 1, this notion of n-continuity of type-D becomes the notion of continuity
in a normed space.

Example 3.6. The operator T in example 3.3 is n-continuous of type-D

Example 3.7. The operator T in example 3.4 is 2-continuous of type-D

Theorem 3.8. Let T : X → Y be a linear operator. Then, the following statements
are equivalent.
(1) T is n-continuous of type-D.
(2) T is n-continuous of type-D at 0 ∈ X.
(3) T is n-bounded of type-D.

Proof. It is obvious that (1) implies (2).

(2) =⇒ (3) : Suppose T is n-continuous of type-D at 0 ∈ X. By definition, there
is a δ > 0 such that

‖Tu1, ..., Tu2‖ < 1

whenever
‖u1‖‖u2‖ · · · ‖un‖ < δ.

Let (x1, ..., xn) ∈ Xn.

If ‖x1‖‖x2‖...‖xn‖ = 0, at least one of x1, ..., xn is 0. Then by linearity of T ,
at least one of Tx1, Tx2, ..., Txn is 0. It implies that Tx1, Tx2, ..., Txn are linearly
dependent. Hence, ‖Tx1, ..., Txn‖ = 0.

If ‖x1‖‖x2‖...‖xn‖ 6= 0, let ui = ( δ4 )
1
n

xi

‖xi‖ , i = 1, 2, ..., n.
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Clearly,

‖u1‖‖u2‖...‖un‖ =
δ

4
< δ.

Then, we have

‖Tu1, Tu2, ..., Tun‖ = ‖T (
δ

4
)

1
n
x1
‖x1‖

, T (
δ

4
)

1
n
x2
‖x2‖

, ..., T (
δ

4
)

1
n
xn
‖xn‖

‖

=
δ

4
· 1

‖x1‖...‖xn‖
· ‖Tx1, Tx2, ..., Txn‖

=⇒ ‖Tx1, Tx2, ..., Txn‖ =
4

δ
‖x1‖...‖xn‖‖Tu1, Tu2, ..., Tun‖

<
4

δ
‖x1‖...‖xn‖ · 1

=⇒ T is n-bounded of type-D.

(3) =⇒ (1) : Suppose T is n-bounded of type-D.

Then for x ∈ X,

‖Tx1 − Tx, Tx2 − Tx, ..., Txn − Tx‖ ≤ ‖T‖Dn ‖x1 − x‖...‖xn − x‖.

Let ε > 0 be given.

Let δ = ε
1+‖T‖Dn

with ‖x1 − x‖‖x2 − x‖...‖xn − x‖ < δ.

Then,

‖Tx1 − Tx, Tx2 − Tx, ..., Txn − Tx‖ ≤ ‖T‖Dn ‖x1 − x‖...‖xn − x‖
< ‖T‖Dn .δ

= ‖T‖Dn .
ε

1 + ‖T‖Dn
< ε.

Thus, for given ε > 0, there exists δ > 0 such that

‖Tx1 − Tx, Tx2 − Tx, · · · , Txn − Tx‖ < ε

whenever ‖x1 − x‖‖x2 − x‖ · · · ‖xn − x‖ < δ, where x1, · · · , xn ∈ X.

Therefore, T is n-continuous of type-D.
This completes the proof. �
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Proposition 3.9. Let X be a real vector space with dimension ≥ n, n being a
positive integer and be equipped with a norm ‖.‖ and an n-norm ‖., ..., .‖. Also, Let
(Y, ‖., ..., .‖) be an n-normed space and T : X → Y be a linear operator.
If T is n-bounded of both types-B and D, then ‖T‖Bn = ‖T‖Dn .

proof. If T is n-bounded of type B,

‖T‖Bn = sup
‖x1,··· ,xn‖6=0

‖Tx1, · · · , Txn‖
‖x1, · · · , xn‖

.

If T is n-bounded of type D,

‖T‖Dn = sup
xi∈X,‖xi‖6=0

‖Tx1, · · · , Txn‖
‖x1‖ · · · ‖xn‖

.

Let xi ∈ X with ‖xi‖ 6= 0 for i = 1, 2, ..., n.

Define

xi =
‖xi‖yi

n
√
‖y1, ..., yn‖

, yi ∈ X and ‖y1, ..., yn‖ 6= 0

=
‖xi‖yi
α

, α = n
√
‖y1, ..., yn‖.

Now,

‖Tx1, ..., Txn‖ = ‖T (
‖x1‖y1
α

), ..., T (
‖xn‖yn
α

)‖

=
‖x1‖...‖xn‖

αn
‖Ty1, ..., T yn‖

=⇒ ‖Tx1, ..., Txn‖
‖x1‖...‖xn‖

=
‖Ty1, ..., T yn‖
‖y1, ..., yn‖

(3.9.1)

Taking supremum of the right side of (3.9.1) over {(y1, ..., yn) ∈ Xn : ‖y1, ..., yn‖ 6=
0} , we have

‖Tx1, ..., Txn‖
‖x1‖...‖xn‖

≤ ‖T‖Bn .

It is true for all (x1, ..., xn) ∈ Xn and each xi 6= 0.
Therefore,

sup
xi∈X,‖xi‖6=0

‖Tx1, ..., Txn‖
‖x1‖...‖xn‖

≤ ‖T‖Bn

=⇒ ‖T‖Dn ≤ ‖T‖Bn .

Again, Taking supremum of the left side of (3.9.1) over {(x1, ..., xn) ∈ Xn :
‖xi‖ 6= 0, i = 1, 2, ..., n}, we have
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‖T‖Dn ≥
‖Ty1, ..., T yn‖
‖y1, ..., yn‖

.

It is true for all (y1, ..., yn) ∈ Xn and ‖y1, ..., yn‖ 6= 0.
Therefore,

‖T‖Dn ≥ sup
xi∈X,‖xi‖6=0

‖Ty1, ..., T yn‖
‖y1, ..., yn‖

.

=⇒ ‖T‖Dn ≥ ‖T‖Bn .
This completes the proof. �

Proposition 3.10. Let X be an inner product space equipped with standard n-
norm ‖., ..., .‖S and (Y, ‖., ..., .‖) be an n-normed space. If T : X → Y is n-bounded
of type-B, then T is n-bounded of type-D.

proof. Since T is n-bounded of type-B,

‖Tx1, ..., Txn‖ ≤ K‖x1, ..., xn‖S.

But,

‖x1, ..., xn‖S =
√

det〈xi, xj〉

≤
√
‖x1‖2‖x2‖2...‖xn‖2

(Hadamard’s determinant theorem)

= ‖x1‖‖x2‖...‖xn‖.

Therefore,

‖Tx1, ..., Txn‖ ≤ K‖x1‖‖x2‖...‖xn‖

=⇒ T is n- bounded of type-D.

This completes the proof. �

Proposition 3.11. Let X be a real vector space equipped with a norm ‖.‖ and an
n-norm ‖., ..., .‖. Also, Let T : X → X be a linear operator.
If T is n-bounded of both types-A and C, then ‖T‖An = ‖T‖Cn .

proof. If T is n-bounded of type-A,

‖T‖An = sup{‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖
‖x1‖...‖xn‖

: x1, x2, ..., xn ∈ X, ‖x1‖...‖xn‖ 6= 0}

And, if T is n-bounded of type-C,
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‖T‖Cn = sup{‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖
‖x1, ..., xn‖

: x1, x2, ..., xn ∈ X, ‖x1, ..., xn‖ 6= 0}

Let xi ∈ X with ‖xi‖ 6= 0 for i = 1, 2, ..., n.

Define

xi =
‖xi‖yi

n
√
‖y1, ..., yn‖

, yi ∈ X and ‖y1, ..., yn‖ 6= 0

=
‖xi‖yi
α

, α = n
√
‖y1, ..., yn‖

Now,

‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖

= ‖T (
‖x1‖
α

y1),
‖x2‖
α

y2, ...,
‖xn‖
α

yn‖+ · · ·+ ‖‖x1‖
α

y1,
‖x2‖
α

y2, ..., T (
‖xn‖
α

yn)‖

=
‖x1‖‖x2‖...‖xn‖

αn
(‖Ty1, y2, ..., yn‖+ ‖y1, T y2, ..., yn‖+ · · ·+ ‖y1, y2, ..., T yn‖)

Therefore,

‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖
‖x1‖‖x2‖...‖xn‖

=
‖Ty1, y2, ..., yn‖+ ‖y1, T y2, ..., yn‖+ · · ·+ ‖y1, y2, ..., T yn‖

‖y1, ..., yn‖

Consequently,

‖T‖An ≥
‖Ty1, y2, ..., yn‖+ ‖y1, Ty2, ..., yn‖+ · · ·+ ‖y1, y2, ..., T yn‖

‖y1, ..., yn‖

It is true for all y1, y2, ..., yn ∈ X with ‖y1, y2, ..., yn‖ 6= 0.

Therefore,

‖T‖An ≥ sup{‖Ty1, y2, ..., yn‖+ ‖y1, T y2, ..., yn‖+ · · ·+ ‖y1, y2, ..., T yn‖
‖y1, ..., yn‖

: y1, y2, ..., yn ∈ X, ‖y1, ..., yn‖ 6= 0}

=⇒ ‖T‖An ≥ ‖T‖Cn .
Also,

‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖
‖x1‖‖x2‖...‖xn‖

≤ ‖T‖Cn
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It is true for all x1, x2, ..., xn ∈ X with ‖x1‖‖x2‖...‖xn‖ 6= 0.

Therefore,

sup{‖Tx1, x2, ..., xn‖+ ‖x1, Tx2, ..., xn‖+ · · ·+ ‖x1, x2, ..., Txn‖
‖x1‖...‖xn‖

: x1, x2, ..., xn ∈ X, ‖x1‖...‖xn‖ 6= 0} ≤ ‖T‖Cn
=⇒ ‖T‖An ≤ ‖T‖Cn .

This completes the proof. �

Proposition 3.12. Let X be an inner product space equipped with standard n-
norm ‖., ..., .‖S. If T : X → X is n-bounded of type-C, then T is n-bounded of
type-A.

proof. T : X → X is n-bounded of type-C. It implies that there exists a constant
K such that
for all x1, x2, ..., xn ∈ X,
‖Tx1, x2, ..., xn‖S + ‖x1, Tx2, ..., xn‖S + · · ·+ ‖x1, x2, ..., Txn‖S ≤ K‖x1, ..., xn‖S .

But,

‖x1, ..., xn‖S =
√

det〈xi, xj〉
Applying Hadamard inequality,

‖x1, ..., xn‖S ≤ ‖x1‖‖x2‖...‖xn‖

Therefore, for all x1, x2, ..., xn ∈ X,
‖Tx1, x2, ..., xn‖S + ‖x1, Tx2, ..., xn‖S + · · ·+ ‖x1, x2, ..., Txn‖S ≤ K‖x1‖...‖xn‖.

It implies T is n-bounded of type-A. This completes the proof. �
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40(1969),229-264.

[5] Gähler, S. , “Untersuchungen über verallgemeinerte m-metrische räume III”, Math. Nachr.
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