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Abstract. Extending the concept of Petrov tensor, in this article we attempt

to introduce generalised space matter tensor [1],[2], [3], [4]. In the Riemannian

manifold, it is found that the second Bianchi identity for the generalized space-

matter tensor is satisfied if the energy-momentum tensor is of Codazzi type [5]. We

study the nature of Riemannian manifolds by imposing curvature restrictions like

symmetry, recurrent, weakly symmetry [6], [7], [8] etc. on this generalized Petrov

space-matter tensor. We obtain the eigen values of the Ricci tensor S corresponding

to the vector fields associated with the various 1− forms.
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1. INTRODUCTION

A tensor P of type (0, 4) satisfying all the algebraic properties of the Rie-
mannian curvature tensor was introduced by A. Z. Petrov [9] in 1949. It is defined
by

P =
k

2
g ∧ T +R− σG, (1)

where R is the Riemann curvature tensor of type (0, 4), T is the energy-momentum
tensor of type (0, 2), k is a cosmological constant, σ is the energy density (scalar),
G is a tensor of type (0, 4) given by

G(X,Y, Z, U) = g(X,U)g(Y,Z)− g(X,Z)g(Y,U)
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for all X,Y, Z, U ∈ χ(M), χ(M) being the Lie algebra of smooth vector fields on
M and the Kulkarni-Nomizu product u∧ v of two (0, 2) tensors u and v is defined
by

(u ∧ v)(X1, X2, X3, X4) = u(X1, X4)v(X2, X3) + u(X2, X3)v(X1, X4)

− u(X1, X3)v(X2, X4)− u(X2, X4)v(X1, X3),

Xi ∈ χ(M), i = 1, 2, 3, 4. The tensor P is known as the space-matter tensor of
type (0, 4) of the manifold M . The first part of the tensor represents the curvature
of the space and the second part represents the distribution and motion of the
matter.

A tensor field P̃ of type (0, 4) is said to be generalized space matter tensor
[1] if it satisfies the following equation

P̃ = aR+
k

2
b g ∧ T + cG, (2)

where a, b, c are non-zero scalars. If we take a = 1, b = 1 and c = −σ then P̃
reduces to P .
Einstein’s field equation is given by

kT = S +
(
λ− r

2

)
g, (3)

where λ is a cosmological constant, r is the scalar curvature, and S is the Ricci
tensor of type (0, 2). By virtue of (3), (2) takes the form

P̃ = aR+
b

2
g ∧ S +

(
c+ bλ− br

2

)
G. (4)

The paper is categorized into two major sections. The immediate section contains
some of the interesting properties of the generalized space-matter tensor P̃ . In the
other section, we have considered few limitations on the generalized space-matter
tensor P̃ like symmetric, reccurant, weakly symmetric and studied the behavior of
the manifold under consideration.We obtained the eigen values of the Ricci tensor
S corresponding to the vector fields associated with the various 1-forms.

2. PRELIMINARIES

In this section we deal with some fundamental properties of P̃ under certain
curvature conditions. The Ricci tensor S of type (0, 2) and the scalar curvature r
can be obtained from the curvature tensor by the following relations

S(X,Y ) = g(QX,Y ) =

n∑
i=1

R(ei, X, Y, ei) and r =

n∑
i=1

S(ei, ei) =

n∑
i=1

g(Qei, ei),

where {ei : i = 1, 2, ..., n} is an orthonormal basis for the tangent space at any
point of the manifold and Q is the symmetric endomorphism corresponding to the
Ricci tensor S.
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Differentiating (2) covariantly and then taking cyclic sum with respect to X,
Y , Z; we obtain by the view of Bianchi identity that

(∇X P̃ )(Y, Z, U, V ) + (∇Y P̃ )(Z,X,U, V ) + (∇Z P̃ )(X,Y, U, V ) (5)

=
k

2
b[{(∇XT )(Z,U)− (∇ZT )(X,U)}g(Y, V ) + {(∇Y T )(X,U)

−(∇XT )(Y,U)}g(Z, V ) + {(∇ZT )(Y,U)− (∇Y T )(Z,U)}g(X,V )

+{(∇XT )(Y, V )− (∇Y T )(X,V )}g(Z,U) + {(∇ZT )(X,V )

−(∇XT )(Z, V )}g(Y, U) + {(∇Y T )(Z, V )− (∇ZT )(Y, V )}g(X,U)]

+
k

2
{db(X) g ∧ T (Y, Z, U, V ) + db(Y ) g ∧ T (Z,X,U, V )

+db(Z) g ∧ T (X,Y, U, V )}+ dc(X){g(Z,U)g(Y, V )− g(Z, V )g(Y, U)}
+dc(Y ){g(Z, V )g(X,U)− g(Z,U)g(X,V )}
+dc(Z){g(Y,U)g(X,V )− g(X,U)g(Y, V )}.

If we consider the energy-momentum tensor to be Codazzi type [5] in a Rie-
mannian manifold, then we obtain

(∇XT )(Y,Z) = (∇Y T )(X,Z) = (∇ZT )(X,Y )

for all vector fields X, Y, Z on the manifold provided that b, c are constants.
Hence (5) takes the form

(∇X P̃ )(Y, Z, U, V ) + (∇Y P̃ )(Z,X,U, V ) + (∇Z P̃ )(X,Y, U, V ) = 0. (6)

Thus we infer that:

Theorem 2.1. In a Riemannian manifold the second Bianchi identity for the gen-
eralized space-matter tensor is given by (6) provided that the energy-momentum
tensor is of Codazzi type and b, c are constants.

Using (3) in (5) we get

(∇X P̃ )(Y,Z, U, V ) + (∇Y P̃ )(Z,X,U, V ) + (∇Z P̃ )(X,Y, U, V ) (7)

=
1

2
b[{(∇XS)(Z,U)− (∇ZS)(X,U)}g(Y, V ) + {(∇Y S)(X,U)

−(∇XS)(Y,U)}g(Z, V ) + {(∇ZS)(Y,U)− (∇Y S)(Z,U)}g(X,V )

+{(∇XS)(Y, V )− (∇Y S)(X,V )}g(Z,U) + {(∇ZS)(X,V )

−(∇XS)(Z, V )}g(Y,U) + {(∇Y S)(Z, V )− (∇ZS)(Y, V )}g(X,U)]

+
1

2
{db(X) g ∧ S(Y,Z, U, V ) + db(Y ) g ∧ S(Z,X,U, V )

+db(Z) g ∧ S(X,Y, U, V )}] + {dc(X) + (λ− r

2
)db(X)

− b

2
dr(X)}{g(Z,U)g(Y, V )− g(Z, V )g(Y, U)}+ {dc(Y ) + (λ− r

2
)db(Y )

− b

2
dr(Y )}{g(Z, V )g(X,U)− g(Z,U)g(X,V )}+ {dc(Z) + (λ− r

2
)db(Z)
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− b

2
dr(Z)}{g(Y,U)g(X,V )− g(X,U)g(Y, V )}.

Now if we assume that the Ricci tensor is of Codazzi type [5],then dr(X) = 0
for all vector fields X, which reduces (7) to (6), provided b, c are constants. Also
if in a Riemannian manifold admitting Einstein’s field equation where b, c are
constants, the relation (6) holds then (7) transforms into

{(∇XS)(Z,U)− (∇ZS)(X,U)}g(Y, V ) + {(∇Y S)(X,U)

−(∇XS)(Y, U)}g(Z, V ) + {(∇ZS)(Y,U)− (∇Y S)(Z,U)}g(X,V )

+{(∇XS)(Y, V )− (∇Y S)(X,V )}g(Z,U) + {(∇ZS)(X,V )

−(∇XS)(Z, V )}g(Y,U) + {(∇Y S)(Z, V )− (∇ZS)(Y, V )}g(X,U)

−[dr(X){g(Z,U)g(Y, V )− g(Z, V )g(Y, U)}+ dr(Y ){g(Z, V )g(X,U)

−g(Z,U)g(X,V )}+ dr(Z){g(Y,U)g(X,V )− g(X,U)g(Y, V )}] = 0,

since b ̸= 0. Contracting with respect to Y and V , we obtain

2(n− 3)[(∇XS)(Z,U)− (∇ZS)(X,U)] = (2n− 5)[dr(X)g(Z,U)− dr(Z)g(X,U)],

which gives, on contraction over Z and U that dr(X) = 0 for all vector fields X
and consequently the last relation reduces to

(∇XS)(Z,U) = (∇ZS)(X,U) for all X, Y, Z ∈ χ(M).

Therefore the Ricci tensor as well as energy-momentum tensor is of Codazzi type.
Hence we can state the following:

Theorem 2.2. In a Riemannian manifold admitting Einstein’s field equation with
cosmological constant, the second Bianchi identity for the generalized space-matter
tensor is given by (6) if and only if the Ricci tensor is of Codazzi type, whenever
b, c are constants.

3. GENERALIZED SPACE-MATTER TENSOR SATISFYING
EINSTEIN EQUATION UNDER SOME RESTRICTIONS

We now intend to study Riemannian manifolds by imposing different restric-
tions on the on the generalized space-matter tensor.

3.1. Riemannian manifold with vanishing generalized space-matter ten-
sor. First of all we consider a Riemannian manifold (Mn, g) (n > 3), in which
the generalized space-matter tensor of type (0, 4) vanishes identically. Then the
equation (4) leads to the following

aR+
b

2
g ∧ S +

(
c+ bλ− br

2

)
G = 0. (8)

Contraction of (8) yields

uS + [2(n− 1)(c+ bλ)− (n− 2)br]g = 0, (9)
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where u = 2a+ (n− 2)b. Further contraction gives

vr + 2n(n− 1)(c+ bλ) = 0, (10)

where v = 2a− (n− 1)(n− 2)b. Thus we can state the following:

Theorem 3.1. If in a Riemannian manifold (Mn, g) (n > 3), admitting Einstein’s
field equation and with vanishing generalized space-matter tensor, 2a ̸= (n− 1)(n−
2)b, then the scalar curvature is given by the relation (10).

3.2. Riemannian manifold with symmetric generalized space-matter ten-
sor. Next we assume that in a Riemannian manifold (Mn, g) (n > 3) the general-

ized space-matter tensor P̃ of type (0, 4) is symmetric, i. e.

(∇X P̃ )(Y,Z, U, V ) = 0. (11)

In view of (4) and (11), we attain

2a(∇XR)(Y,Z, U, V ) + b[(∇XS)(Y, V )g(Z,U) (12)

+(∇XS)(Z,U)g(Y, V )− (∇XS)(Y,U)g(Z, V )

−(∇XS)(Z, V )g(Y,U)] + 2[dc(X) + λdb(X)

−1

2
{bdr(X) + rdb(X)}]G(Y, Z, U, V ) + 2da(X)R(Y,Z, U, V )

+db(X)[S(Y, V )g(Z,U) + S(Z,U)g(Y, V )

−S(Y,U)g(Z, V )− S(Z, V )g(Y,U)] = 0.

Contraction of (12) over Y and V gives

u(∇XS)(Z,U) + du(X)S(Z,U) + [2(n− 1){dc(X) + λdb(X)} (13)

− (n− 2){bdr(X) + rdb(X)}]g(Z,U) = 0.

By further contraction and then putting u = 0 we obtain

dc(X) = −λdb(X). (14)

This leads to the following:

Theorem 3.2. In a Riemannian manifold (Mn, g) (n > 3), admitting Einstein’s
field equation and with symmetric generalized space-matter tensor; b, c are con-
nected by the relation dc(X) = −λdb(X), whenever u = 0.

Setting X = U = ei in the relation (13) and taking summation over i, 1 ≤
i ≤ n, we get

[2a− (n− 2)b]dr(Z) + 2du(QZ) + 4(n− 1)[dc(Z) + λdb(Z)] (15)

= 2(n− 2)rdb(Z).

By the help of (14) and (15) it follows that

(n− 2)udr(Z) + 2ndu(QZ) = 2du(Z)r. (16)

If r is constant then from the above relation we get that either u is also constant
or

J1(QX) =
r

n
J1(X),
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which gives

S(X, τ1) =
r

n
g(X, τ1),

where g(X, τ1) = J1(X) = du(X) for all vector fields X. Hence we have the
following:

Theorem 3.3. If in a Riemannian manifold (Mn, g) (n > 3), admitting Einstein’s
field equation and with symmetric generalized space-matter tensor, the scalar cur-
vature r is constant, then either u is constant or r

n is an eigen value of the Ricci
tensor S corresponding to the eigen vector τ1 defined by g(X, τ1) = J1(X) = du(X),
for all X ∈ χ(M).

Let us consider that a, b are constants and u is non-zero. Then (16) takes
the form

dr(X) = 0 for all X ∈ χ(M). (17)

By the virtue of (17) and (14) it follows that

dc(X) = 0 for all X ∈ χ(M). (18)

Using (18), (17) in (13); we have

(∇XS)(Z,U) = 0 for all X, Z, U ∈ χ(M). (19)

Finally in the view of (17), (18) and (19) the equation (12) reduces to the following
equation

∇R = 0. (20)

Further if (20) holds, then the relations (19) and (17) also hold and consequently
differentiating (4) covariantly, we obtain by the virtue of (17), (19) and (20)

(∇X P̃ )(Y,Z, U, V ) = dc(X)G(Y,Z, U, V ).

Hence we can state the following:

Theorem 3.4. A Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s
field equation and with symmetric generalized space-matter tensor is symmetric
whenever a, b are constants and u is non-zero and conversely provided c is also
constant.

3.3. Riemannian manifold with recurrent generalized space-matter ten-
sor. Again if in a Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s field

equation, the generalized space-matter tensor P̃ of type (0, 4) is recurrent then we
have

(∇X P̃ )(Y,Z, U, V ) = L(X)P̃ (Y,Z, U, V ), (21)

where L is the non-zero 1-form of recurrence such that L(X) = g(X, ρ) for all
vector fields X and ρ be the unit vector field associated with L. By the virtue of
the above relation, the relation (6) leads to the following relation

L(X)P̃ (Y,Z, U, V ) + L(Y )P̃ (Z,X,U, V ) + L(Z)P̃ (X,Y, U, V ) = 0.

Contracting the above relation with respect to Y , V and applying (4), we obtain

{2(n− 1)(c+ λb)− (n− 2)br}[L(X)g(Z,U)− L(Z)g(X,U)]
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+u[L(X)S(Z,U)− L(Z)S(X,U)] + 2L(P̃ (Z,X)U) = 0.

Now setting X = U = ei in the above relation and taking summation over i,
1 ≤ i ≤ n, it follows that

S(Z, ρ) =
r0
2u

g(Z, ρ), (22)

where r0 = 2(n − 1)(n − 2)(c + λb) + {2a − (n − 2)(n − 3)b}r and g(Z, ρ) = L(Z)
for all vector fields Z. Thus we get the following:

Theorem 3.5. If in a Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s
field equation with recurrent generalized space-matter tensor, the energy-momentum
tensor is of Codazzi type then r0

2u is an eigenvalue of the Ricci tensor S correspond-
ing to the eigenvector ρ, defined by g(X, ρ) = L(X) for all vector fields X, whenever
b, c are constants.

Now in the view of (21), (4) converts into

2a(∇XR)(Y,Z, U, V ) + b[(∇XS)(Y, V )g(Z,U)

+(∇XS)(Z,U)g(Y, V )− (∇XS)(Y,U)g(Z, V )

−(∇XS)(Z, V )g(Y, U)] + 2[dc(X) + λdb(X)

−1

2
{bdr(X) + rdb(X)}]G(Y,Z, U, V ) + 2da(X)R(Y, Z, U, V )

+db(X)[S(Y, V )g(Z,U) + S(Z,U)g(Y, V )

−S(Y, U)g(Z, V )− S(Z, V )g(Y,U)]

= L(X)[2aR(Y,Z, U, V ) + b{S(Y, V )g(Z,U)

+S(Z,U)g(Y, V )− S(Y,U)g(Z, V )

−S(Z, V )g(Y,U)}+ 2(c+ λb− br

2
)G(Y,Z, U, V )].

Let us set Y = V = ei in the above equation and take summation over i, 1 ≤ i ≤ n
to obtain

u(∇XS)(Z,U) + du(X)S(Z,U) + [2(n− 1){dc(X) (23)

+λdb(X)} − (n− 2){bdr(X) + rdb(X)}]g(Z,U)

= L(X)[uS(Z,U) + {2(n− 1)(c+ λb)− (n− 2)br}g(Z,U)].

Taking contraction with respect to Z and U , we get

vdr(X) + dv(X)r + 2n(n− 1)[dc(X) + λdb(X)] (24)

= [vr + 2n(n− 1)(c+ λb)]L(X).

which reduces to

vdr(ρ) + dv(ρ)r + 2n(n− 1)[dc(ρ) + λdb(ρ)] (25)

= [vr + 2n(n− 1)(c+ λb)]L(ρ).

by substituting X = ρ. Thus we conclude that:
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Theorem 3.6. In a Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s
field equation and recurrent generalized space-matter tensor, the generator of recur-
rence ρ is given by the relation (25).

If v = 0 then from the equation (24) it can be obtained that

L(X) =
dc(X) + λdb(X)

(c+ λb)
. (26)

Further if v ̸= 0 and r, a, b, c are constants then from the equation (24) we also
have

r = −2n(n− 1)
(c+ λb)

v
, (27)

which leads to the following:

Theorem 3.7. In a Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s
field equation and recurrent generalized space-matter, if v = 0 then the 1-form of
recurrence L is given by the relation (26) otherwise the scalar curvature r is given
by (27) whenever the scalar curvature r itself and a, b, c are constants.

Again setting Y = V = ei in (23) and taking summation over i, 1 ≤ i ≤ n,
we have

[2a− (n− 2)b]dr(Z) + 2du(QZ) + 4(n− 1)[dc(Z) (28)

+λdb(Z)]− 2(n− 2)rdb(Z)

= 2uL(QZ) + 2[2(n− 1)(c+ λb)− (n− 2)br]L(Z).

By the virtue of (24) and (28) it follows that

(n− 2)udr(Z) + 2n[du(QZ)− uL(QZ)] = 2r[du(Z)− uL(Z)]. (29)

If r is constant then the last relation yields

J2(QZ) =
r

n
J2(Z), (30)

which gives

S(Z, τ2) =
r

n
g(Z, τ2),

where g(Z, τ2) = J2(Z) = du(Z) − uL(Z) for all vector fields Z. Let us consider
r, a, b be constants. Then we have from (29)

L(QZ) =
r

n
L(Z), (31)

which yields

S(Z, ρ) =
r

n
g(Z, ρ).

Thus we can state the following:

Theorem 3.8. If in a Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s
field equation and recurrent generalized space-matter tensor, the scalar curvature r
is constant then,
(i) r

n is an eigen value of the Ricci tensor S corresponding to the eigen vector τ2
defined by g(X, τ2) = J2(X) = du(X)− uL(X) for all vector fields X.
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(ii) r
n is an eigen value of the Ricci tensor S corresponding to the eigen vector ρ

defined by L(X) = g(X, ρ) for all vector fields X, whenever a and b are constants.

3.4. Riemannian manifold with weakly symmetric generalized space-matter
tensor. Lastly, let in a Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s

field equation, we take the generalized space-matter tensor P̃ of type (0, 4) as weakly
symmetric [6], [7]. Then we have

(∇X P̃ )(Y,Z, U, V ) = A(X)P̃ (Y,Z, U, V ) +B(Y )P̃ (X,Z,U, V ) (32)

+ B(Z)P̃ (Y,X,U, V ) + E(U)P̃ (Y,Z,X, V )

+ E(V )P̃ (Y,Z, U,X),

where A, B and E are 1-forms (not simultaneously zero) such that A(X) = g(X, ρ1),
B(X) = g(X, ρ2), E(X) = g(X, ρ3) for all vector fields X and ρ1, ρ2, ρ3 be the
unit vector fields associated with A, B, E respectively. In the view of (32), the
equation (6) takes the form

J3(X)P̃ (Y,Z, U, V ) + J3(Y )P̃ (Z,X,U, V ) + J3(Z)P̃ (X,Y, U, V ) = 0.

The contraction of the above relation over Y , V and the equation (4) gives

{2(n− 1)(c+ λb)− (n− 2)br}[J3(X)g(Z,U)− J3(Z)g(X,U)]

+u[J3(X)S(Z,U)− J3(Z)S(X,U)] + 2J3(P̃ (Z,X)U) = 0,

where J3(X) = A(X)− 2B(X) for all vector fields X. Now contracting the above
relation with respect to X and U , we obtain

J3(QX) =
r0
2u

J3(X) (33)

i.e.

S(X, τ3) =
r0
2u

g(X, τ3),

where g(X, τ3) = J3(X) for all vector fields X. This leads to the following:

Theorem 3.9. If in a Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s
field equation with weakly symmetric generalized space-matter tensor, the energy-
momentum tensor is of Codazzi type then r0

2u is an eigenvalue of the Ricci tensor S
corresponding to the eigenvector τ3, defined by g(X, τ3) = J3(X) = A(X)− 2B(X)
for all vector fields X, whenever b, c are constants.

Now in the view of (32), we obtain∑
(∇X P̃ )(ei, Z, U, ei)

= A(X)
∑

P̃ (ei, Z, U, ei) +B(Z)
∑

P̃ (ei, X, U, ei)

+E(U)
∑

P̃ (ei, Z,X, ei) + P̃ (X,Z,U, ρ2) + P̃ (X,U,Z, ρ3).

Applying (4) in the above relation, it follows that

u(∇XS)(Z,U) + du(X)S(Z,U) + [2(n− 1){dc(X) + λdb(X)} (34)

−(n− 2){bdr(X) + rdb(X)}]g(Z,U)
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= A(X)[uS(Z,U) + {2(n− 1)(c+ λb)

−(n− 2)br}g(Z,U)] + [2aR(X,Z,U, ρ2) + b{B(QX)g(Z,U)

+B(X)S(Z,U)−B(Z)S(X,U)−B(QZ)g(X,U)}+ 2(c+ λb

−br

2
)G(X,Z,U, ρ2)] +B(Z)[2aS(X,U) + b{rg(X,U)

+(n− 2)S(X,U)}+ 2(n− 1)(c+ λb− br

2
)g(X,U)]

+E(U)[2aS(X,Z) + b{rg(X,Z) + (n− 2)S(X,Z)}+ 2(n− 1)(c+ λb

−br

2
)g(X,Z)] + [2aR(ρ3, Z, U,X) + b{E(QX)g(Z,U)

+E(X)S(Z,U)− E(U)S(X,Z)− E(QU)g(X,Z)}

+2(c+ λb− br

2
)G(ρ3, Z, U,X)].

Setting Z = U = ei in (34) and taking summation over i, 1 ≤ i ≤ n, we find

vdr(X) + rdv(X) + 2n(n− 1)[dc(X) + λdb(X)] (35)

= [vr + 2n(n− 1)(c+ λb)]A(X) + 2[uJ4(QX)

+ {br + 2(n− 1)(c+ λb− br

2
)}J4(X)],

where J4(X) = B(X)+E(X) for all vector fields X. Contracting (34) with respect
to X and U , we have

1

2
[2a− (n− 2)b]dr(Z) + du(QZ) (36)

+2(n− 1)[dc(Z) + λdb(Z)]− (n− 2)rdb(Z)

= uA(QZ) + [2(n− 1)(c+ λb)− (n− 2)br]A(Z)

+[{2a+ (2n− 3)b}r + 2(n− 1)2(c+ λb− br

2
)]B(Z)

−uJ5(QZ) + [br + 2(n− 1)(c+ λb− br

2
)]E(Z),

where J5(Z) = B(Z) − E(Z) for all vector fields Z. Finally contracting (34) with
respect to X, Z and replacing U by Z, we get

1

2
[2a− (n− 2)b]dr(Z) + du(QZ) (37)

+2(n− 1)[dc(Z) + λdb(Z)]− (n− 2)rdb(Z)

= uA(QZ) + [2(n− 1)(c+ λb)− (n− 2)br]A(Z)

+uJ5(QZ) + [br + 2(n− 1)(c+ λb− br

2
)]B(Z)

+[{2a+ (2n− 3)b}r + 2(n− 1)2(c+ λb− br

2
)]E(Z).

Now (36) and (37) yield

J5(QX) =
1

u
[{a+ (n− 2)b}r + (n− 1)(n− 2){c− (r − 2λ)

b

2
}]J5(X), (38)
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provided that u is non-zero. Which gives

S(X, τ5) =
1

u
[{a+ (n− 2)b}r + (n− 1)(n− 2){c− (r − 2λ)

b

2
}]g(X, τ5),

where g(X, τ5) = J5(X) = B(X)−E(X) for all vector fields X. And if u = 0, then
we can obtain

either r =
2(n− 1)(c+ λb)

(n− 2)b
or B(X) = E(X). (39)

Again (36) and (37) yield

[2a− (n− 2)b]dr(Z) + 2du(QZ) (40)

+4(n− 1)[dc(Z) + λdb(Z)]− 2(n− 2)rdb(Z)

= 2uA(QZ) + 2[2(n− 1)(c+ λb)− (n− 2)br]A(Z)

+2[{a+ (n− 1)b}r + n(n− 1)(c+ λb− br

2
)]J4(Z),

Now by the help of (35) and (40), we have

(n− 2)udr(Z) + 2ndu(QZ)− 2du(Z)r (41)

= 2u[nA(QZ)− rA(Z)− 2J4(QZ)]

+ 4[{2na− (n− 2)(n2 − n− 4)b}r
+ 2(n+ 2)(n− 1)(n− 2)(c+ λb)]J4(Z).

Suppose u = 0. Then from the above relation we get

either r =
2(n− 1)(c+ λb)

(n− 2)b
or B(X) = −E(X). (42)

Hence from (39) and (42) we have, if u = 0 then the only possible case is r =
2(n−1)(c+λb)

(n−2)b . Now by the virtue of (35) and (40), we have

[2da(Z)− (n− 2)(n− 3)db(Z)]r + 2(n− 1)(n− 3)[dc(Z) + λdb(Z)] (43)

−(n− 2)2bdr(Z)− [2ar − (n− 2){(n− 3)br − 2(n− 1)(c+ λb)}]J6(Z)

= 2du(QZ)− 2uJ6(QZ),

where J6(Z) = A(Z)−B(Z)−E(Z) for all vector fields Z. If r, a, b, c are constants
and u is non-zero then the above relation becomes

J6(QZ) =
1

2u
[{2a− (n− 3)(n− 2)b}r + 2(n− 2)(n− 1)(c+ λb)]J6(Z),

which implies

S(Z, τ6) =
1

2u
[{2a− (n− 3)(n− 2)b}r + 2(n− 2)(n− 1)(c+ λb)]g(Z, τ6),

where g(Z, τ6) = J6(Z) = A(Z) − B(Z) − E(Z) for all vector fields Z. Further
using (35) and (40), we can obtain

[4a− n(n− 2)b]dr(Z) + 2du(QZ) (44)

+[2da(Z)− (n+ 1)(n− 2)db(Z)]r

+2(n+ 2)(n− 1)[dc(Z) + λdb(Z)]
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= 2uJ7(QZ) + [2ar − (n+ 1)(n− 2)br

+2(n+ 2)(n− 1)(c+ λb)]J7(Z),

where J7(Z) = A(Z)+B(Z)+E(Z) for all vector fields Z. If r, a, b, c are constants
and u is non-zero then above relation reduces to

J7(QZ) =
−1

2u
[{2a− (n+ 1)(n− 2)b}r + 2(n+ 2)(n− 1)(c+ λb)]J7(Z).

which implies

S(Z, τ7) =
−1

2u
[{2a− (n+ 1)(n− 2)b}r + 2(n+ 2)(n− 1)(c+ λb)]g(Z, τ7),

where g(Z, τ7) = J7(Z) = A(Z)+B(Z)+E(Z) for all vector fields Z. Thus we can
state the following:

Theorem 3.10. In a Riemannian manifold (Mn, g) (n > 3) admitting Einstein’s
field equation and with weakly symmetric generalized space-matter tensor if u is

zero then the scalar curvature r is given by r = 2(n−1)(c+λb)
(n−2)b otherwise,

(i) 1
u [{a+(n−2)b}r+(n−1)(n−2){c−(r−2λ) b2}] is an eigen value of the Ricci tensor

S corresponding to the eigen vector τ5 defined by g(X, τ5) = J5(X) = B(X)−E(X)
for all X ∈ χ(M).
(ii) 1

2u [{2a− (n− 3)(n− 2)b}r+2(n− 2)(n− 1)(c+ λb)] and −1
2u [{2a− (n+1)(n−

2)b}r+2(n+2)(n−1)(c+λb)] are eigen values of the Ricci tensor S corresponding to
the eigen vector τ6 defined by g(X, τ6) = J6(X) = A(X)−B(X)−E(X) for all X ∈
χ(M) and the eigen vector τ7 defined by g(X, τ7) = J7(X) = A(X)+B(X)+E(Z)
for all X ∈ χ(M) respectively, whenever r, a, b, c are constants.

The forms of the Ricci tensor and scalar curvature is obtained for Riemannian
manifold with generalized space matter tensor satisfying Einstein field equation
under the restrictions that:

• the generalized space matter tensor is vanishing,
• the generalized space matter tensor is symmetric,
• the generalized space matter tensor is recurrent,
• the generalized space matter tensor is weakly symmetric.

The most obvious idea is to create examples of the generalized space matter tensor.
Moreover, the generalized space matter tensor may be studied as a tool in soliton
theory like generalized Ricci soliton, Yamabe soliton and others. The tensor may
also be used as a tool in the theory of relativity and cosmology.
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