THE ECCENTRIC DIGRAPH OF THE CORONA OF C_n WITH K_m , C_m OR P_m

 ${\rm Sri}~{\rm Kuntari}^1$ and ${\rm Tri}~{\rm Atmojo}~{\rm Kusmayadi}^2$

¹Department of Mathematics, Faculty of Mathematics and Natural Sciences Sebelas Maret University kuntari@uns.ac.id ²Department of Mathematics, Faculty of Mathematics and Natural Sciences Sebelas Maret University trikusma@uns.ac.id

Abstract. Let G be a graph with a set of vertices V(G) and a set of edges E(G). The distance from vertex u to vertex v in G, denoted by d(u, v), is the length of the shortest path from vertex u to v. The eccentricity of vertex u in graph G is the maximum distance from vertex u to any other vertices in G, denoted by e(u). Vertex v is an eccentric vertex from u if d(u, v) = e(u). The eccentric digraph ED(G) of a graph G is a graph that has the same set of vertices as G, and there is an arc (directed edge) joining vertex u to v if v is an eccentric vertex from u. In this paper, we answer the open problem proposed by Boland and Miller [1] to find the eccentric digraph of various classes of graphs. In particular, we determine the eccentric digraph of the corona of C_n with K_m, C_m and P_m , with C_n, K_m or P_m are cycle, complete graph and path, respectively.

Key words: Eccentricity, eccentric digraph, corona graph.

²⁰⁰⁰ Mathematics Subject Classification: 05C99.

Received: 25-10-2011, revised: 10-07-2012, accepted: 14-07-2012.

¹¹³

Abstrak. Misal G adalah suatu graf dengan himpunan titik V(G) dan himpunan sisi E(G). Jarak dari titik u ke titik v di G, dinotasikan d(u, v), adalah panjang dari lintasan terpanjang dari titik u ke v. Eksentrisitas titik u dalam graf G adalah jarak maksimum dari titik u ke sebarang titik yang lain di G, dinotasikan e(u). Titik v adalah suatu titik eksentrik dari u jika d(u, v) = e(u). Digraf eksentrik ED(G) dari suatu graf G adalah suatu graf yang mempunyai himpunan titik yang sama dengan himpunan titik G, dan terdapat suatu busur (garis berarah) yang menghubungkan titik u ke v jika v adalah suatu titik eksentrik dari u. Boland dan Miller [1] memperkenalkan digraf eksentrik dari suatu digraf. Mereka juga mengusulkan suatu masalah untuk menemukan digraf eksentrik dari graf korona C_n dengan K_m, C_m atau P_m , dengan C_n, K_m dan P_m masing-masing adalah graf siklik, graf lengkap dan lintasan.

Kata kunci: Eksentrisitas, digraf eksentrik, graf korona.

1. Introduction

Most of the notations and terminologies follow that of Gallian [5], Chartrand and Oellermann [3]. Let G be a graph with a set of vertices V(G) and a set of edges E(G). The distance from vertex u to vertex v in G, denoted by d(u, v), is the length of the shortest path from vertex u to v. If there is no a path joining vertex u and vertex v, then $d(u, v) = \infty$. The eccentricity of vertex u in graph G is the maximum distance from vertex u to any other vertices in G, denoted by e(u), and so $e(u) = max\{d(u, v) \mid v \in V(G)\}$. Radius of a graph G, denoted by rad(G), is the minimum eccentricity of every vertex in G. The diameter of a graph G, denoted by diam(G), is the maximum eccentricity of every vertex in G. If e(u) = rad(G), then vertex u is called central vertex. Center of a graph G, denoted by cen(G), is an induced subgraph formed from central vertices of G. Vertex v is an *eccentric* vertex from u if d(u, v) = e(u). The eccentric digraph ED(G) of a graph G is a graph having the same set of vertices as G, V(ED(G)) = V(G), and there is an arc (directed edge) joining vertex u to v if v is an *eccentric* vertex from u. An *arc* of a digraph D joining vertex u to v and vertex v to u is called a symmetric arc. Further, Fred Buckley [2] concluded that almost in every graph G, its eccentric digraph is $ED(G) = \overline{G}^*$, where \overline{G}^* is a complement of G which is every edge replaced by a symmetric arc. One of the topics in graph theory is to determine the eccentric digraph of a given graph. The *eccentric digraph* of a graph was initially introduced by Fred Buckley (Boland and Miller [1]). The class of graph considered here is corona of two graphs G_1 and G_2 . According to Harary [6], the corona $G_1 \odot G_2$ of two graphs G_1 and G_2 was defined as the graph G obtained by taking one copy of G_1 (which has n vertices) and n copies of G_2 and then joining the *i*th vertex of G_1 to every vertex in the *i*th copy of G_2 . Some authors have investigated the problem of finding the eccentric digraph. For example, Boland and Miller [1] determined the eccentric digraph of a digraph, while Gimbert, et.al [4] found the characterisation of the eccentric digraphs. Boland and Miller [1] also proposed an open problem

to find the *eccentric digraph* of various classes of graphs. Some results related to this open problem can be found in [7, 8]. In this paper, we also answer the open problem proposed by Boland and Miller [1]. In particular, we determine the *eccentric digraph* of the *corona* of a cycle of n vertices C_n with the classes of graphs K_m, C_m or P_m , where C_m, K_m and P_m are cycle, complete graph and path with m vertices, respectively.

2. Main Results

Given two graphs C_n and M, where M is either a cycle C_m , a complete graph K_m or a path P_m . The set of vertices of them are $V(C_n) = \{v_1, v_2, \cdots, v_n\}$ and $V(M) = \{u_1, u_2, \cdots, u_m\}$, respectively. The edges set of C_n is $E(C_n) = \{v_1v_2, v_2v_3, \cdots, v_{n-1}v_n, v_nv_1\}$. The set of edges of M are $E(M) = \{u_1u_2, u_2u_3, \cdots, u_{m-1}u_m, u_mu_1\}$ for $M = C_m$, $E(M) = \{u_iu_j : i, j = 1, 2, \cdots, m\}$ for $M = K_m$ and $E(M) = \{u_1u_2, u_2u_3, \cdots, u_{m-1}u_m\}$ for $M = P_m$. The corona of C_n with M, denoted by $C_n \odot M$ is a graph with $V(C_n \odot M) = V(C_n \cup \bigcup_{v_i \in V(C_n)} V(M_i)$ and $E(C_n \odot M) = E(C_n) \cup \bigcup_{v_i \in C_n} E(M_i) \cup \{(v_i, u_i : v_i \in V(C_n), u_i \in V(M_i)\}$ with $M_i = M$.

The materials of this research are mostly from the papers related to the eccentric digraph. The following result is the eccentric digraphs of the corona $C_n \odot M$ graph. There are two cases the eccentric digraphs of the corona $C_n \odot M$ graph to consider based on the values of n.

Theorem 2.1. Let $C_n \odot M$ be the corona graph of C_n with M, where M is either one of C_m , K_m or P_m . If n is even then the eccentric digraph $ED(C_n \odot M)$ is the graph G as depicted in Figure 1.

PROOF. It is easy to check that the eccentricity of vertex v_i is $\frac{n}{2} + 1$ and the eccentricity of vertex u_{ij} is $\frac{n}{2} + 2$, $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$. The eccentricities of all vertices are used to determine the eccentric vertex of all vertices of the corona graph $C_n \odot M$. The arcs can be obtained by joining every vertex to its eccentric vertex of the corona graph $C_n \odot M$. Table 1 shows the eccentric vertices and arcs of the corona graph $C_n \odot M$.

From Table 1, the arc of the corona graph $C_n \odot M$ vertex is adjacent to its eccentric vertices. The arcs $u_{ij}u_{(\frac{n}{2}+i(mod\ n))j}$ are symmetric and arcs $v_iu_{(\frac{n}{2}+i(mod\ n))j}$ are not symmetric for $i = 1, 2, \dots, n, j = 1, 2, \dots, m$. Therefore the eccentric digraph of the corona graph $C_n \odot M$ with n even can be formed into $\frac{n}{2}K_{m,m} \cup n(\overline{K}_1 \vee \overline{K}_m)$ with $V(\overline{K}_1) = \{v_i\}, \overline{K}_m = V(M_{\frac{n}{2}+i(mod\ n)})$ for $i = 1, 2, \dots, n$.

Theorem 2.2. Let $C_n \odot M$ be the corona graph of C_n with M, where M is either one of C_m , K_m or P_m . If n is odd then the eccentric digraph $ED(C_n \odot M)$ is the graph G as depicted in Figure 2.

vertex of $C_n \odot M$	eccentric vertices	arc
v_1	$u_{(\frac{n}{2}+1)j}, j = 1, 2, \cdots, m$	$v_1 u_{\left(\frac{n}{2}+1\right)j}$
:		÷
$v_{\frac{n}{2}}$	$u_{nj}, j = 1, 2, \cdots, m$	$v_{\frac{n}{2}}u_{nj}$
$v_{\frac{n}{2}+1}$	$u_{1j}, j = 1, 2, \cdots, m$	$v_{\frac{n}{2}+1}u_{1j}$
:	•	•
v_n	$u_{\frac{n}{2}j}, j = 1, 2, \cdots, m$	$v_n u_{\frac{n}{2}j}$
$u_{1j}, j = 1, 2, \cdots, m$	$u_{(\frac{n}{2}+1)j}$	$u_{1j}u_{(\frac{n}{2}+1)j}$
:		÷
$u_{\frac{n}{2}j}, j = 1, 2, \cdots, m$	u_{nj}	$u_{\frac{n}{2}j}u_{nj}$
$u_{(\frac{n}{2}+1)j}, j = 1, 2, \cdots, m$	u_{1j}	$u_{(\frac{n}{2}+1)j}u_{1j}$
:		:
$u_{nj}, j = 1, 2, \cdots, m$	$ u_{\frac{n}{2}j}$	$u_{nj}u_{\frac{n}{2}j}$
	\land \land	

TABLE 1. The eccentric vertices and arc of $C_n \odot M$ vertex, where n even

FIGURE 1. The eccentric digraph of $C_n \odot M$ with n even

PROOF. By observation, we obtain the eccentricity of vertex v_i is $\frac{n+1}{2}$ and eccentricity of vertex u_{ij} is $\frac{n+1}{2} + 1$, $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$. The eccentricity of all vertices are used to determine the eccentric vertex of all vertices of the corona graph $C_n \odot M$. The arcs can be obtained by joining every vertex to its eccentric vertex of the corona graph $C_n \odot M$. Table 2 shows the eccentric vertices and arcs of the corona graph $C_n \odot M$.

From Table 2, the arc of the corona graph $C_n \odot M$ vertex is adjacent to its eccentric vertices. The symmetric arcs are $u_{ij}u_{(\frac{n+1}{2}+i(mod\ n))j}, u_{ij}u_{(\frac{n+1}{2}+(i-1))j}$ for $i = 1, 2, \cdots, \frac{n+1}{2}$ and $u_{ij}u_{(i-\frac{n+1}{2})j}, u_{ij}u_{(i-\frac{n+1}{2}+1)j}$ for $i = \frac{n+1}{2}, \cdots, n$. The arcs $v_iu_{(\frac{n+1}{2}+i(mod\ n))j}, v_iu_{(\frac{n+1}{2}+(i-1))j}$ for $i = 1, 2, \cdots, \frac{n+1}{2}$ and $v_iu_{(i-\frac{n+1}{2}(mod\ n))j}, v_iu_{(\frac{n+1}{2}+(i-1))j}$ for $i = 1, 2, \cdots, \frac{n+1}{2}$ and $v_iu_{(i-\frac{n+1}{2}(mod\ n))j}, v_iu_{(i-\frac{n+1}{2}+1)j}$ for $i = \frac{n+1}{2}, \cdots, n$ are not symmetric. Therefore the eccentric digraph of the corona graph $C_n \odot M$ with n odd can be formed into $nK_{m,2m} \cup nK_{1,2m}$ with $V(K_1) = \{v_i\}, \overline{K}_m = V(M_i)$ for $i = 1, 2, \cdots, n, K_{2m} = M_{i-\frac{n+1}{2}} \cup M_{i-\frac{n+1}{2}+1}$ for $i = \frac{n+1}{2}, \cdots, n$ and $K_{2m} = M_{\frac{n+1}{2}+i(mod\ n)} \cup M_{\frac{n+1}{2}+(i-1)}$ for $i = 1, 2, \cdots, \frac{n+1}{2}$.

The Eccentric Digraph

vertex of $C_n \odot M$	eccentric vertices	arc
	$u_{\frac{n+1}{2}j}, u_{(\frac{n+1}{2}+1)j}; j = 1, \cdots, m$	$v_1 u_{\frac{n+1}{2}j}, v_1 u_{(\frac{n+1}{2}+1)j}$
v_2	$u_{(\frac{n+1}{2}+1)j}, u_{(\frac{n+1}{2}+2)j}; j = 1, \cdots, m$	$v_2 u_{(\frac{n+1}{2}+1)j}, v_2 u_{(\frac{n+1}{2}+2)j}$
	:	· · · · · · · · · · · · · · · · · · ·
$v_{\frac{n+1}{2}-1}$	$u_{(n-1)j}, u_{nj}; j = 1, \cdots, m$	$v_{\frac{n+1}{2}-1}u_{(n-1)j}, v_{\frac{n+1}{2}-1}u_{nj}$
$v_{\frac{n+1}{2}}$	$u_{nj}, u_{1j}; j = 1, \cdots, m$	$v_{\frac{n+1}{2}}u_{nj}, v_{\frac{n+1}{2}}u_{1j}$
$v_{\frac{n+1}{2}+1}$	$u_{1j}, u_{2j}; j = 1, \cdots, m$	$v_{\frac{n+1}{2}+1}u_{1j}, v_{\frac{n+1}{2}+1}u_{2j}$
:	:	· · · · · · · · · · · · · · · · · · ·
v_n	$u_{\frac{n-1}{2}j}, u_{\frac{n+1}{2}j}; j = 1, \cdots, m$	$v_n u_{\frac{n-1}{2}j}, v_n u_{\frac{n+1}{2}j}$
$u_{1j}, j = 1, \cdots, m$	$u_{\frac{n+1}{2}j}, u_{(\frac{n+1}{2}+1)j}$	$u_{1j}u_{\frac{n+1}{2}j}, u_{1j}u_{(\frac{n+1}{2}+1)j}$
$u_{2j}, j = 1, \cdots, m$	$u_{(\frac{n+1}{2}+1)j}, u_{(\frac{n+1}{2}+2)j}$	$u_{2j}u_{(\frac{n+1}{2}+1)j}, u_{2j}u_{(\frac{n+1}{2}+2)j}$
:	:	:
$u_{(\frac{n+1}{2}-1)j}, j=1,\cdots,m$	$u_{(n-1)j}, u_{nj}$	$u_{(\frac{n+1}{2}-1)j}u_{(n-1)j}, u_{(\frac{n+1}{2}-1)j}u_{nj}$
$u_{\frac{n+1}{2}j}, j=1,\cdots,m$	u_{nj},u_{1j}	$u_{\frac{n+1}{2}j}u_{nj},u_{\frac{n+1}{2}j}u_{1j}$
$u_{(\frac{n+1}{2}+1)j}, j = 1, \cdots, m$	u_{1j}, u_{2j}	$u_{(\frac{n+1}{2}+1)j}u_{1j}, u_{(\frac{n+1}{2}+1)j}u_{2j}$
:	:	. .
$u_{nj}, j = 1, \cdots, m$	$u_{\frac{n-1}{i}, u_{\frac{n+1}{i}}}$	$u_{nj}u_{\frac{n-1}{i}}, u_{nj}u_{\frac{n+1}{i}}$

TABLE 2. The eccentric vertices and arc of $C_n \odot M$ vertex, where n odd

FIGURE 2. The eccentric digraph of $C_n \odot M$ with n odd

References

- Boland, J. and Miller, M.,"The Eccentric Digraph of a Digraph", Proceeding of AWOCA'01 Lembang-Bandung, Indonesia, (2001), 66-70.
- [2] Buckley, F., "The Eccentric Digraph of a Graph", Congressus Numerantium 149(2001), 65-76.
- [3] Chartrand, G. and Oellermann, O. R., *Applied and Algorithmic Graph Theory*, International Series in Pure and Applied Mathematics, McGraw-Hill Inc, California, 1993
- [4] Gimbert, J., Lopez, N., Miller, M., and Ryan, J., "Characterization of eccentric digraphs", Discrete Mathematics, 306, Issue 2,(2006),210 - 219.

- [5] Gallian, J. A. "Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics, 16, (2009), 1-219.
- [6] Harary, F., Graph Theory, Addison-Wesley Publishing Company.Inc., Reading, MA, 1972.
- [7] Kusmayadi, T.A. and M. Rivai. "The Eccentric Digraph of an Umbrella Graph", Proceeding of INDOMS International Conference on Mathematics and Its Applications (IICMA), Gadjah Mada University Yogyakarta, Indonesia, ISBN 978-602-96426-0-5,(2009), 0627-0638
- [8] Kusmayadi, T.A. and M. Rivai. "The Eccentric Digraph of a Double Cones Graph", Proceeding of INDOMS International Conference on Mathematics and Its Applications (IICMA), Gadjah Mada University Yogyakarta, Indonesia, ISBN 978-602-96426-0-5, (2009), 0639-0646

118