
J. Indones. Math. Soc.
Vol. 29, No. 02 (2023), pp. 135–149.

CHEMICAL APPLICABILITY OF SECOND ORDER
SOMBOR INDEX

B. Basavanagouda and Goutam Veerapurb

Department of Mathematics, Karnatak University, Dharwad - 580 003,

Karnataka, India, abbasavanagoud@kud.ac.in, bsamarasajeevana@gmail.com

Abstract. In this paper, we introduce the higher-order Sombor index of a molecular

graph. In addtition, we compute the second order Sombor index of some standard

class of graphs and line graph of subdivision graph of 2D-lattice, nanotube and

nanotorus of TUC4C8[p, q] and also we obtain the expressions of the second order

Sombor index of the line graph of subdivision graph of tadpole graph, wheel graph,

ladder graph and chain silicate network CSn. Further, we study the linear regression

analysis of the second order Sombor index with the entropy, acentric factor, enthalpy

of vaporization and standard enthalpy of vaporization of an octane isomers.
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tructure, tadpole graph.

1. Introduction and Preliminaries

A topological index is a molecular descriptor that is calculated based on
the molecular graph of a chemical compound. Chemical graph theory is a branch
of mathematical chemistry, which has an major effect on the development of the
chemical sciences. In molecular graph, graph is used to represent a molecule by
considering the atoms as the vertices and molecular bonds as the edges. A graph-
ical invariant is a number related to a graph. In other words, it is a fixed number
under graph automorphisms. In chemical graph theory, these invariants are also
called the topological indices. There are several topological indices available today,
some of which are used in chemistry. Chemical Data Bases have registered over
3000 topological graph indices. Chemists and mathematicians both investigate this
topic. Two-dimensional topological indices have been a successful method in re-
cent years for the discovery of several novel medications, including anticonvulsants,
anineoplastics, antimalarials, antiallergics, and silico generation [14, 16]. The use
of topological indices and quantitative structure-activity relationships (QSAR) has
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therefore demonstrated that they have evolved from being a promising potential
to serving as a cornerstone in the process of drug development and other research
fields [10, 11, 12].

Most crucially, three-dimensional molecular characteristics (topographic in-
dices) and molecular chirality are also provided with the further research of chemical
indices and drug design and discovery [26]. Studying three-dimensional quantita-
tive structure-activity relationships, such as molecular chirality, is becoming more
and more important. Nevertheless, there have only been a few outcomes thus
far, with the exception of one related term that is commonly cited in [7]. Boiling
points, solubilities, densities, anaesthetics, narcotics, toxicities, resistance etc. are
just a few examples of the impressive range of physical, chemical, and biological
properties to which higher order topological indices have been successfully applied.
These results have been published in more than two books and several hundred
scientific journals [14, 15]. The literature has revealed findings about these indices
mathematical properties [1, 21].

Let G = (V,E) be such graph with V as vertex set and E as edge set and
|V | = n, |E| = m. The degree dG(v) of a vertex v ∈ V (G) is the number of edges
incident to it in G. Li and Zhao introduced the first general Zagreb index [17] as
follows

Mα(G) =
∑

u∈V (G)

(du)α.

The connectivity index ( or Randić index ) of a graph G , denoted by χ(G), was
introduced by Randić [22] in the study of branching properties of alkanes. It is
defined as

χα(G) =
∑

uv∈E1(G)

1√
dG(u) · dG(v)

. (1.1)

In [14, 13] with the intention of extending the applicability of the connectivity
index, Kier, Hall, Murray and Randić considered the higher-order connectivity
index of a graph G as

αχ(G) =
∑

u1u2···uα+1∈Eα(G)

1√
dG(u1)dG(u2) · · · dG(uα+1)

. (1.2)

The first and second Zagreb [8] indices of a graph G are defined as

M1(G) =
∑

v∈v(G)

dG(v)2,

and

M2(G) =
∑

uv∈E(G)

dG(u) · dG(v).

The first Zagreb index [18] can be written also as

M1(G) =
∑

uv∈E(G)

dG(u) + dG(v). (1.3)
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B. Basavanagoud et. al. [3] considered higher-order first Zagreb index as

αM1(G) =
∑

u1u2···uα+1∈Eα(G)

[dG(u1) + dG(u2) · · · dG(uα+1)]. (1.4)

B. Basavanagoud et. al. [3] defined the second order first Zagreb index as

2M1(G) =
∑

u1u2u3∈Eα(G)

[dG(u1) + dG(u2) + dG(u3)]. (1.5)

The Sombor index was introduced by I. Gutman [9] to be described as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2. (1.6)

Bearing in mind Eqs. (1.1), (1.2), (1.3), ( 1.4) and (1.5), we can consider the
higher-order Sombor index of Eq. (1.6) as

αSO(G) =
∑

u1u2···uα+1∈Eα(G)

√
dG(u1)2 + dG(u2)2 · · · dG(uα+1)2. (1.7)

Here, Eα(G) denote the path of length α in a graph G, for example E1(G) and
E2(G) are path of length 1 and 2 in a graph G respectively.
By Eq. (1.7), it is consistent to define the second order Sombor index as

2SO(G) =
∑

u1u2u3∈E2(G)

√
dG(u1)2 + dG(u2)2 + dG(u3)2. (1.8)

2. Estimating the second order Sombor index of graphs

In this section, we compute the second order Sombor index of some standard
class of graphs viz., path graph Pn, wheel graph Wn+1, complete bipartite graph
Kr,s and r− regular graph. The following Remark, which is needed to prove main
results.

Remark 2.1. [4] For a graph G on m edges, the number of paths of length 2 in G
is −m+ 1

2M1(G).

Theorem 2.1. Let Pn be the path graph on n ≥ 4 vertices. Then

2SO(Pn) = 2(3 + (n− 4)
√

3).

Proof. For a path graph Pn on n ≥ 4 vertices each vertex is of degree either 1 or
2. Based on the degree of vertices on the path of length 2 in Pn we can partition
E2(Pn). In Pn, path (1, 2, 2) appears 2 times and path (2, 2, 2) appears (n − 4)
times. Hence by Eq. (1.8) we get the required result. �

Theorem 2.2. Let Wn+1 be the wheel graph n ≥ 4 vertices. Then

2SO(Wn+1) = n3
√

3 +
n2 + 3n(

√
n2 + 18)

2
.
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Proof. For a wheel graph Wn+1 on n ≥ 4 vertices each vertex is of degree either 3 or
n. Based on the degree of vertices on the path of length 2 in Wn+1 we can partition

E2(Wn). In Wn+1, path (3, 3, 3) appears n times and path (3, 3, n) appears n2+3n
2

times. Therefore by Eq. (1.8), we get the required result. �

Theorem 2.3. Let Kr,s be the complete bipartite graph on r ≥ 2, s ≥ 3, vertices.
Then

2SO(Kr,s) =
rs(s− 1)

2

√
2r2 + s2 +

sr(r − 1)

2

√
2s2 + r2.

Proof. For a complete bipartite graph Kr,s with r + s vertices each vertex is of
degree either r or s. Based on the degree of vertices on the path of length 2 in
Kr,s we can partition E2(Kr,s). In Kr,s, path (r, s, r) appears r

(
s
2

)
times and path

(s, r, s) appears s
(
r
2

)
times. Therefore by Eq. (1.8), we get the required result. �

Theorem 2.4. Let G be a r − regular graph on n vertices

2SO(G) =
nr2
√

3(r − 1)

2
.

Proof. Since G is a r−regular graph, the path appears nr(r−1)
2 times in G. There-

fore by Eq. (1.8), we get the required result. �

Corollary 2.5. For a cycle graph Cn, n ≥ 3,

2SO(Cn) = 2n
√

3.

Corollary 2.6. For a complete graph Kn, n ≥ 4,

2SO(Kn) =
n
√

3(n− 2)(n− 1)2

2
.

Lemma 2.7. [5] Let G be a graph with n vertices and m edges. Then

M1(G) ≤ m

(
2m

n− 1
+ n− 2

)
. (2.1)

Lemma 2.8. [6] Let G be a graph with n vertices and m edges, m > 0. Then the
equality

M1(G) = m

(
2m

n− 1
+ n− 2

)
.

holds if and only if G is isomorphic to star graph Sn or Kn or Kn−1 ∪K1.

Theorem 2.9. Let G be a graph with n vertices and m edges. Then

2SO(G) ≤ (n− 1)
√

3 ·m
(

m

n− 1
+
n− 4

2

)
. (2.2)

the equality holds if and only if G is isomorphic to Kn.
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Proof.

2SO(G) =
∑

uvw∈E2(G)

√
dG(u)2 + dG(v)2 + dG(w)2

≤
∑

uvw∈E2(G)

(n− 1)
√

3 (2.3)

= (n− 1)
√

3

(
−m+

1

2
M1(G)

)
≤ (n− 1)

√
3

(
−m+

1

2
m

(
2m

n− 1
+ n− 2

))
(2.4)

= (n− 1)
√

3 ·m
(

m

n− 1
+
n− 4

2

)
.

�

Relations (2.3) and (2.4) were obtained by taking into account for each vertices
v ∈ V (G), we have dG(v) ≤ n − 1 and Eq. (2.1), respectively. Suppose that
equality in (2.2) holds. Then inequalities (2.3) and (2.4) become equalities. From
(2.3) we conclude that for every vertex v, dG(v) = (n − 1). Then from (2.4) and
Lemma 2.8 it follows that G is a complete graph. Conversely, let G be a complete
graph. Then it is easily verified that equality holds in (2.2).

Lemma 2.10. Let G be a graph with n vertices, m edges. Then

M1(G) ≥ 2m(2p+ 1)− pn(1 + p) where p = b2m
n
c.

and the equality holds if and only if the difference of the degrees of any two vertices
of graph G is at most one.

Theorem 2.11. Let G be a graph with n vertices, m edges and the minimum vertex
degree δ. Then

2SO(G) ≥ δ
√

3

2
(4mp− pn(p+ 1)) where p = b2m

n
c. (2.5)

and the equality holds if and only if G is a regular graph.
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Proof.

2SO(G) =
∑

uvw∈Eα(G)

√
dG(u)2 + dG(v)2 + dG(w)2

≥
∑

uvw∈E2(G)

δ
√

3 (2.6)

= δ
√

3

(
−m+

1

2
M1(G)

)
≥ δ

√
3

(
−m+

1

2
(2m(2p+ 1)− pn(1 + p))

)
(2.7)

=
δ
√

3

2
(4mp− pn(p+ 1)).

Relations (2.6) and (2.7) were obtained by taking into accounting for each vertices
v ∈ V (G), we have dG(v) ≥ δ and Eq. (2.5), respectively. Suppose now that
equality in (2.5) holds. Then inequalities (2.6) and (2.7) become equalities. From
(2.6) we conclude that for every vertex v, dG(v) = δ. Then from Eq. (2.7) and
Lemma 2.10 it follows that G is a regular graph. Conversely, let G be a regular
graph. Then it is easily verified that equality holds in (2.5). �

3. Computing the the second order Sombor index of some families of
graphs

In [19] Nadeem et al. obtained expressions for certain topological indices
of the line graphs of subdivision graphs of 2D-lattice, nanotube, and nanotorus
of TUC4C8[p, q], where p and q denote the number of squares in a row and the
number of rows of squares, respectively in 2D-lattice, nanotube and nanotorus as
shown in Figure 1 (a), (b) and (c) respectively. The numbers of vertices and edges
of 2D-lattice, nanotube and nanotorus of TUC4C8[p, q] are given in Table 1.

Figure 1. (a) 2D-lattice of TUC4C8[4, 3]; (b) TUC4C8[4, 3] nan-
otube; (c) TUC4C8[4, 3] nanotorus.
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Table 1. Number of vertices and edges.

Graph Number of vertices Number of edges
2D-lattices of TUC4C8[p, q] 4pq 6pq − p− q
TUC4C8[p, q] nanotube 4pq 6pq − p
TUC4C8[p, q] nanotorus 4pq 6pq

In [23, 24], Ranjini et al. presented explicit formula for computing the Shultz index
and Zagreb indices of the subdivision graphs of the tadpole, wheel and ladder
graphs. In 2015, Su and Xu [25] calculated the general sum-connectivity index and
coindex of the L(S(Tn,k)), L(S(Wn)) and L(S(Ln)). In [20], Nadeem et al. derived
some exact formulas for ABC4 and GA5 indices of the line graphs of the tadpole,
wheel and ladder graphs by using the notion of subdivision.

Figure 2. (a) Subdivision graph of 2D-lattice of TUC4C8[4, 3];
(b) Line graph of the subdivision graph of 2D-lattice of
TUC4C8[4, 3].

Table 2. Partition of paths of length 2 of the graph X.

(dX(u), dX(v), dX(w)) where uvw ∈ E2(X) Number of paths of length 2 in X
(2, 2, 2) 8
(2, 2, 3) 4(p+ q − 2)
(3, 3, 2) 8(p+ q − 2)
(3, 3, 3) (36pq − 26p− 26q + 16)

Lemma 3.1. [19] Let X be the line graph of the subdivision graph of 2D − lattice
of TUC4C8[p, q]. Then

M1(X) = 108pq − 38p− 38q.

Theorem 3.2. Let X be the line graph of the subdivision graph of 2D− lattice of
TUC4C8[p, q]. Then

2SO(X) = 16
√

3 + 4
√

17(p+ q−2) + 8
√

22(p+ q−2) + 3
√

3(36pq−26p−26q+ 16).
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Proof. The subdivision graph of 2D-lattice of TUC4C8[p, q] and the graph X are
shown in Fig. 2 (a) and (b), respectively. In X there are total 2(6pq−p−q) vertices
each vertex is of degree either 2 or 3 and 18pq − 5p− 5q edges. From Remark 2.1
and Lemma 3.1, we get 36pq − 14p− 14q of paths of length 2 in X. Based on the
degree of vertices on the path of length 2 in X we can partition E2(X) as shown
in Table 2. Apply Eq. (1.8) to Table 2 and get the required result. �

Figure 3. (a) Subdivision graph of TUC4C8[4, 3] of nanotube; (b)
line graph of the subdivision graph of TUC4C8[4, 3] of nanotube.

Table 3. Partition of paths of length 2 of the graph Y .

(dY (u), dY (v), dY (w)) where uvw ∈ E2(Y ) Number of paths of length 2 in Y
(2, 2, 3) 4p
(3, 3, 2) 8q
(3, 3, 3) (36pq − 26p)

Lemma 3.3. [19] Let Y be the line graph of the subdivision graph of TUC4C8[p, q]
nanotube. Then

M1(Y ) = 108pq − 38p.

Theorem 3.4. Let Y be the line graph of the subdivision graph of TUC4C8[p, q]
nanotube. Then

2SO(Y ) = 4p
√

17 + 8p
√

22 + 3
√

2(36pq − 26p).

Proof. The subdivision graph of TUC4C8[p, q] nanotube and the graph Y are shown
in Fig. 3 (a) and (b), respectively. In Y there are total 12pq− 2p vertices in which
each vertex is of degree either 2 or 3 and 18pq − 5p edges. From Remark 2.1 and
Lemma 3.3, we get 36pq − 14p number of paths of length 2 in Y. Based on the
degree of vertices on the paths of length 2 in Y we can partition E2(Y ) as shown
in Table 3. Apply Eq. (1.8) to Table 3 and get the required result. �
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Figure 4. (a) Subdivision graph of TUC4C8[4, 3] of nanotorus;
(b) Line graph of the subdivision graph of TUC4C8[4, 3] of nan-
otorus.

Theorem 3.5. Let Z be the line graph of the subdivision graph of TUC4C8[p, q]
nanotorus. Then

2SO(Z) = 9n
√

3.

Proof. The subdivision graph of TUC4C8[p, q] nanotorus and the graph Z are shown
in Fig. 4 (a) and (b), respectively. Since Z is a 3-regular graph with 12pq vertices
and 18pq edges. Therefore by Theorem 2.4, we get the required result. �

Table 4. Partition of paths of length 2 of the graph A =
L(S(Tn,k)) for k = 1.

(dA(u), dA(v), dA(w)) where uvw ∈ E2(A) Number of paths of length 2 in A
(1, 3, 3) 2
(2, 3, 3) 4
(2, 2, 3) 2
(3, 3, 3) 3
(2, 2, 2) 2n− 4

Table 5. Partition of paths of length 2 of the graph A =
L(S(Tn,k)) for k > 1.

(dA(u), dA(v), dA(w)) where uvw ∈ E2(A) Number of paths of length 2 in A
(1, 2, 2) 1
(2, 3, 3) 6
(2, 2, 3) 3
(3, 3, 3) 3
(2, 2, 2) 2n+ 2k − 8
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Lemma 3.6. [23, 25] Let A be the line graph of the subdivision graph of the tadpole
graph Tn,k. Then

M1(A) = 8n+ 8k + 12.

Theorem 3.7. Let A be a line graph of the subdivision graph of the tadpole graph
Tn,k. Then

2SO(A) =

{
2
√

19 + 4
√

22 + 2
√

17 + 9
√

3 + 2(2n− 4)
√

3 for k = 1.

3(1 + 2
√

22 +
√

17 + 3
√

3) + 2(2n+ 2k − 8)
√

3 for k > 1.

Proof. First of all, we consider graph A for n ≥ 3 and k > 1. In this graph there
are total 2(n + k) vertices and 2n + 2k + 1 edges. From Remark 2.1 and Lemma
3.6, we get 2k+ 2n+ 5 of paths of length 2 in A. Based on the degree of vertices on
the paths of length 2 in A we can partition E2(A) as shown in Table 5. Apply Eq.
(1.8) to Table 5 and get the required result. By similar arguments we can obtain
the expression of 2SO(A) for k = 1 from Table 4. �

Lemma 3.8. [23] Let B be a line graph of the subdivision graph of the wheel graph
Wn+1. Then

M1(B) = n3 + 27n.

Table 6. Partition of paths of length 2 of the graph B.

(dB(u), dB(v), dB(w)) where uvw ∈ E2(B) Number of paths of length 2 in B
(3, 3, 3) 7n
(3, 3, n) 2n
(3, n, n) n(n− 1)

(n, n, n) n(n−1)(n−2)
2

Theorem 3.9. Let B be a line graph of the subdivision graph of the wheel graph
Wn+1. Then

2SO(B) = 21n
√

3 + 2n
√

18 + n2 + n(n− 1)
√

9 + 2n2 +
n2(n− 1)(n− 2)

√
3

2
.

Proof. The graph L(S(Wn+1)) contains 4(n + 1) vertices and n2+9n
2 edges. From

Remark 2.1 and Lemma 3.8, we get n3−n2+18n
2 number of paths of length 2 in B.

Based on the degree of vertices on the paths of length 2 in B we can partition E2(B)
as shown in Table 6. Apply Eq. (1.8) to Table 6 and get the required result. �

Lemma 3.10. [23, 25] Let C be a line graph of the subdivision graph of a ladder
graph with order n. Then

M1(C) = 54n− 76.
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Table 7. Partition of paths of length 2 of the graph C.

(dC(u), dC(v), dC(w)) where uvw ∈ E2(C) Number of paths of length 2 in C
(2, 2, 2) 4
(2, 2, 3) 4
(2, 3, 3) 8
(3, 3, 3) 18n− 44

Theorem 3.11. Let C be a line graph of the subdivision graph of a ladder graph
with order n. Then

2SO(C) = 8
√

3 + 4
√

17 + 8
√

22 + 3
√

3(18n− 44).

Proof. The graph L(S(Ln) contains 6n−4 vertices and 18n−20
2 edges. From Remark

2.1 and Lemma 3.10, we get 18n− 28 number of paths of length 2 in C. Based on
the degree of vertices on the paths of length 2 in C we can partition E2(C) as shown
in Table 7. Apply Eq. (1.8) to Table 7 and get the required result. �
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Figure 5. (a) CSn (b) A subdivision graph of CSn (c) A line
graph of subdivision graph of CSn.

A chain silicate network CSn of dimension n is obtained by linearly arranging n
tetrahedra. The number of vertices and the number of edges in CSn with n > 1 are
3n+ 1 and 6n, respectively [2]. The number of vertices and number of edges in the
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line graph of the subdivision graph L(S(CSn)) = G of CSn are 12n and 27n − 9,
respectively. Figure 5 shows the line graph of subdivision graph of CSn.

Table 8. Partition of paths of length 2 of the graph L(S(CSn)) = G.

(dG(u), dG(v), dG(w)) where uvw ∈ E2(G) Number of paths of length 2 in G
(3, 6, 6) 10(2n− 1)
(6, 6, 6) 10(7n− 8)
(3, 3, 6) 4(2n− 1)
(3, 3, 3) 2(5n+ 11)

Lemma 3.12. [2] Consider the line graph of the subdivision graph G of CSn. Then

Mα(G) = 2(n+ 1) · 3α+1 + (n− 1)6α+1.

By substituting α = 2 in above Lemma we get the first Zagreb index of L(S(CSn))

M1(G) = 18(15n− 9). (3.1)

Theorem 3.13. Let G be the line graph of the subdivision graph of CSn. Then

2SO(G) = 90(2n− 1) + 10
√

108(7n− 8) + 12
√

6(2n− 1) + 6
√

3(5n+ 11).

Proof. The graph G contains 12n vertices and 27n − 9 edges. From Remark 2.1
and Eq. (3.1), we get 108n − 72 number of paths of length 2 in G. Based on the
degree of vertices on the paths of length 2 in G we can partition E2(G) as shown
in Table 8. Apply Eq. (1.8) to Table 8 and get the required result. �

4. Chemical Applicability of the second order Sombor index

In this section, a linear regression model of four physical properties is pre-
sented for the second order Sombor index 2SO(G). The physical properties such as
entropy(S), acentric factor (AF), enthalpy of vaporization (HVAP) and standard
enthalpy of vaporization (DHVAP) of octane isomers have shown good correlation
with the index considered in the study. The second order Sombor index 2SO(G) is
tested for the octane isomers database available at https://www.moleculardescriptors.eu/dataset.htm.
2SO(G) index are computed and tabulated in column 6 of Table 9.

Using the method of least squares, the linear regression models for S, AF,
HVAP, and DHVAP are fitted using the data of Table 9. The fitted models for the
2SO(G) index are

S = 122.03814(±2.29981) − 0.48111(±0.06483)(2SO(G)) (4.1)

Acentric Factor = 0.4773309(±0.0114833) − 0.0041000(±0.0003237)(2SO(G)) (4.2)

HV AP = 76.20523(±1.20918) − 0.2038(±0.03409)(2SO(G)) (4.3)

DHV AP = 10.524133(±0.201277) − 0.040454(±0.005674)(2SO(G)) (4.4)

From Table 10 and Figure 6, it is obvious that the 2SO(G) index highly correlates
with the acentric factor and the correlation coefficient |r|=0.9535739. Also, the
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Table 9. Experimental values of S, AF , HV AP and DHV AP
and the corresponding values of the 2SO of octane isomers.

Alkane S AF HV AP DHV AP 2SO(G)
n-Octane 111.700 0.398 73.190 9.915 19.856

2-Methylheptane 109.800 0.378 70.300 9.484 24.851
3-Methylheptane 111.300 0.371 71.300 9.521 25.935
4-Methylheptane 109.300 0.372 70.910 9.483 25.852
3-Ethylhexane 109.400 0.362 71.700 9.476 26.975

2, 2-Dimethylhexane 103.400 0.339 67.700 8.915 37.838
2, 3-Dimethylhexane 108.000 0.348 70.200 9.272 31.948
2, 4-Dimethylhexane 107.000 0.344 68.500 9.029 30.838
2, 5-Dimethylhexane 105.700 0.357 68.600 9.051 29.846
3, 3-Dimethylhexane 104.700 0.323 68.500 8.973 39.953
3, 4-Dimethylhexane 106.600 0.340 70.200 9.316 33.065

2-Methyl-3-ethylpentane 106.100 0.332 69.700 9.209 33.021
3-Methyl-3-ethylpentane 101.500 0.307 69.300 9.081 42.192
2, 2, 3-Trimethylpentane 101.300 0.301 67.300 8.826 45.992
2, 2, 4-Trimethylpentane 104.100 0.305 64.870 8.402 42.660
2, 3, 3-Trimethylpentane 102.100 0.293 68.100 8.897 47.088
2, 3, 4-Trimethylpentane 102.400 0.317 68.370 9.014 37.982

2, 2, 3, 3-Trimethylpentane 93.060 0.255 66.200 8.410 46.053

Table 10. Parameters of regression models for the 2SO(G) index.

Physical properties Value of the correlation coefficient Residual standard error

Entropy 0.8802677 2.209

Acentric factor 0.9535739 0.01103

HVAP 0.8311469 1.161

DHVAP 0.8721235 0.1933

2SO(G) index has good correlation coefficient |r| = 0.8802677 with entropy, |r| =
0.8311469 with HVAP, and |r| = 0.8721235 with DHVAP.

Note: In equations (4.1) - (4.4), the errors of the regression coefficients are repre-
sented within brackets. Table 10 and Figure 6 show the correlation coefficient and
residual standard error for the regression models of four physical properties with
2SO(G) index.
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