Common Fixed Points of Single-Valued and Multi-Valued Mappings in S-Metric Spaces

A. POURGHOLAM¹, M. SABBAGHAN² AND F. TALEGHANI³

 ^{1,2,3}Department of Pure Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, Lahijan, IRAN.
 ¹pourgholam.akbar@yahoo.com, ²masoudsabbaghan@liau.ac.ir, E-mail address on sabbatical leave: masoudsabbaghan99@gmail.com, ³taleghani@liau.ac.ir

Abstract. In this paper, the notion of limit property (-Tayyab kamran, 2004-) and common limit property (-Yicheng Liu & Jun Wu & Zhixiang Li, 2005-) for single-valued and multi-valued mappings on metric spaces are generalized to S-metric spaces. This idea is used to make some common fixed point theorems for single-valued and multi-valued mappings by using a generalization of coincidence point in S-metric spaces. We give an example of an S-metric which is not continuous.

Key words and Phrases: Coincidence point, Common fixed point, Hausdorff Smetric, Limit property.

1. INTRODUCTION

Metric spaces are very important in mathematics. Generalized metric spaces can be pointed out as b-metric, D-metric and fuzzy metric spaces. For more considerations, see [2, 13, 4, 15]. In 2012, another generalized metric space called S-metric space was introduced by Sedghi et al. [16]. In the setting of S-metric space see, for example [5, 9, 12, 14], and the references therein. For application of fixed points and common fixed points in different fields such as fractional calculus, existence theory in fractional boundary value problems, see [1, 3, 6, 7, 8, 11].

In this paper, some common fixed point theorems for single-valued and multivalued mappings are proved in S-metric spaces by using a generalization of coincidence point for pairs (f, F), (f, F) and (g, G) in which the mappings f and g are single-valued and the mappings F and G are multi-valued mappings with values in S-metric space $(CB(X), S_H)$, where S_H is the Hausdorff S-metric.

In section 2, some preliminaries are recalled. In section 3, we state our main theorem. Section 4 is the conclusions.

²⁰¹⁰ Mathematics Subject Classification: 47H10, 54H25 Received: 26-11-2021, accepted: 08-03-2022.

A. POURGHOLAM ET AL.

2. PRELIMINARIES

In this section some definitions, lemmas, theorems, and example are recalled.

Definition 2.1. [16] For nonempty set $X, S: X^3 \longrightarrow [0, \infty)$ is called an S-metric on X if

(1): S(x, y, z) = 0 iff x = y = z;

(2): $S(x, y, z) \leq S(x, x, a) + S(y, y, a) + S(z, z, a),$

for all $x, y, z, a \in X$. (X, S) is called an S-metric space.

 $\begin{array}{ll} \mbox{Example 2.2.} & (1): \ Assume \ \alpha \geq 0 \ and \ X = [\alpha, \infty). \ Define \\ S: X^3 \longrightarrow [0, \infty) \ by \\ S(x, y, z) = \begin{cases} 0 & if \ x = y = z; \\ \max\{x, y, z\} - \alpha & otherwise. \end{cases} \\ The \ mapping \ S \ is \ an \ S \ metric \ on \ X. \ We \ call \ it \ the \ max \ S \ metric. \end{cases} \\ \mbox{(2): } Let \ X = [0, \infty). \ Define \ S: \ X^3 \longrightarrow [0, \infty) \ by \\ S(x, y, z) = \begin{cases} 0 & if \ x = y = z; \\ x + y + 2z & otherwise. \end{cases} \\ S(x, y, z) = \begin{cases} 0 & if \ x = y = z; \\ x + y + 2z & otherwise. \end{cases} \\ Then, \ S \ is \ an \ S \ metric \ on \ X. \end{cases}$

Definition 2.3. [16] In S-metric space (X, S), assume that x is an element of X, and r > 0.

- (1): An open ball $B_s(x,r)$ with center x and radius r is defined by $B_s(x,r) = \{y \in X : S(y,y,x) < r\}.$
- (2): A sequence $\{y_n\}$ in X converges to y if $\lim_{n\to\infty} S(y_n, y_n, y) = 0$. In this case, we write $y_n \to y$ or $\lim_{n\to\infty} y_n = y$.
- (3): A sequence $\{y_n\}$ in X is called a Cauchy sequence if $\lim_{n,m\to\infty} S(y_n, y_n, y_m) = 0.$
- (4): (X, S) is called complete if every Cauchy sequence converges.
- (5): A subset A of X is called bounded if there exists $\epsilon > 0$ such that for all $a, b \in A$, $S(a, a, b) < \epsilon$.

In (X, S), we set $\tau = \{A \subseteq X : A \text{ is a union of open balls}\}$. τ is a topology and we set $CB(X) = \{A \subseteq X : A \text{ is nonempty closed and bounded}\}$.

Example 2.4. Consider $X = [0, \infty)$ with the max S-metric. Then, for $a \in X$ and r > 0, we have: $B_s(a, r) = \begin{cases} [0, r) & \text{if } a < r; \\ \{a\} & \text{if } a \ge r. \end{cases}$

Definition 2.5. Let (X, S) be an S-metric space. We say S is continuous if $S(x_n, y_n, z_n) \to S(x, y, z)$, whenever $x_n \to x$, $y_n \to y$, $z_n \to z$.

Example 2.6. On $X = [0, \infty)$, define

 $S(x, y, z) = \begin{cases} 1 & \text{if } (x, y, z) = (1, 2, 3); \\ |x - z| + |y - z| & \text{otherwise.} \end{cases}$

S is a S-metric on X and it is not continuous. In fact, we have:

$$x_n = 1 + \frac{1}{n} \to 1, \ y_n = 2 + \frac{2}{n} \to 2, \ z_n = 3 + \frac{3}{n} \to 3.$$

But

$$3 = \lim_{n \to \infty} S(x_n, y_n, z_n) \neq S(1, 2, 3) = 1.$$

Definition 2.7. Let (X, S) be an S-metric space. We define $S_H : CB(X)^3 \longrightarrow [0, \infty)$, by

$$S_H(A, B, C) = H_s(A, C) + H_s(B, C),$$

where $H_s(A, B) = \max\{h_S(A, B), h_S(B, A)\},\$ $h_s(A, B) = \sup\{S(a, a, B) : a \in A\}$ and $S(a, a, B) = \inf\{S(a, a, b) : b \in B\}.$ For more information see [14].

Theorem 2.8. [14] S_H is an S-metric on CB(X).

We call S_H the Hausdorff S-metric on CB(X) generated by S.

Remark 2.9. In Example 2.2(1) let u be a nondecreasing continuous function on $X = [\alpha, \infty)$ and let $F(x) = [\alpha, u(x)]$. We have:

$$H_s(Fx, Fy) = \begin{cases} u(y) - \alpha & \text{if } y \ge x; \\ u(x) - \alpha & \text{if } x > y. \end{cases}$$

Let (X, S) be an S-metric space. The set of all nonempty compact subsets of X is denoted by K(X).

Theorem 2.10. [14] Let (X, S) be a complete S-metric spaces. Then, $(K(X), S_H)$ is a complete S-metric space.

The converse is also true. In fact, suppose that $\{x_n\}$ is a Cauchy sequence in (X, S). By Theorem 3.4 [14], we have $\lim_{n\to\infty} S_H(\{x_n\}, \{x_n\}, \{x_m\}) =$ $2\lim_{n\to\infty} S(x_n, x_n, x_m) \to 0$. That is, $\{\{x_n\}\}$ is a Cauchy sequence in $(K(X), S_H)$. So, by Lemma 3.9 [14], there exists $x \in X$ such that $\{x_n\} \to \{x\}$. That is, $x_n \to x$.

Definition 2.11. Let (X, S) be an S-metric space.

- (1) The mappings $f : X \longrightarrow X$ and $F : X \longrightarrow CB(X)$ are given. We say f and F have a coincidence point at $a \in X$ if $f(a) \in F(a)$, also, we say f and F have a common fixed point at $a \in X$ if $f(a) = a \in F(a)$.
- (2) The mapping $F: X \longrightarrow CB(X)$ is given. We say the mapping $f: X \longrightarrow X$ is *F*-weakly commuting at $x \in X$ if $f(f(x)) \in F(f(x))$.

Definition 2.12. Let (X, S) be an S-metric space. The mappings $f, g : X \longrightarrow X$ and $F, G : X \longrightarrow CB(X)$ are given.

 21

- (1) We say the pair (f, F) satisfies the limit property if there exist a sequence $\{x_n\}$ in X, some $t \in X$ and $A \in CB(X)$ such that $\lim_{n\to\infty} fx_n = t \in A = \lim_{n\to\infty} Fx_n$ (see [10]).
- (2) We say The pairs (f, F) and (g, G) satisfy the common limit property if there exist two sequences $\{x_n\}$ and $\{y_n\}$ in $X, t \in X$, and $A, B \in CB(X)$ such that $\lim_{n\to\infty} Fx_n = A$, $\lim_{n\to\infty} Gy_n = B$, $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gy_n = t \in A \cap B$ (see [19]).

3. MAIN RESULT

In this section we state our mean theorem. Some examples and theorems follow up.

Theorem 3.1. Let f be a self-mapping on an S-metric space (X, S) and let F be a multi-valued mapping from X into CB(X) such that

- (1): The pair (f, F) satisfies the limit property;
- (2): For all two distinct elements $x, y \in X$,

$$S_H(Fx, Fx, Fy) < \max\{S(fx, fx, fy), S(fx, fx, Fx) + S(fy, fy, Fy), S(fx, fx, Fy) + S(fy, fy, Fx)\}.$$
(1)

If fX is a closed subset of X, then

- (a): f and F have a coincidence point.
- (b): f and F have a common fixed point provided that for each $v \in C(f, F)$, the mapping f is F-weakly commuting at v and ffv = fv, where $C(f, F) = \{a \in X : fa \in Fa\}$.

Proof. By assumption, there exist a sequence $\{x_n\}$ in $X, t \in X$ and $A \in CB(X)$ such that $\lim_{n\to\infty} f(x_n) = t \in \lim_{n\to\infty} Fx_n = A$. Also there exists $a \in X$ such that t = f(a). We put $x = x_n$ and y = a in inequality (1) to obtain:

$$S_{H}(Fx_{n}, Fx_{n}, Fa) < \max\{S(fx_{n}, fx_{n}, fa), S(fx_{n}, fx_{n}, Fx_{n}) + S(fa, fa, Fa), S(fx_{n}, fx_{n}, Fa) + S(fa, fa, Fx_{n})\}.$$

By Lemma 3.3 [14], It follows that

$$\lim_{n \to \infty} S_H(Fx_n, Fx_n, Fa) = S_H(A, A, Fa) \leqslant S(fa, fa, Fa).$$

By definition of S_H we have

$$2S(fa, fa, Fa) \leq S_H(A, A, Fa) \leq S(fa, fa, Fa).$$

That is, S(fa, fa, Fa) = 0. So, $f(a) \in F(a)$. This proves (a). To prove (b), by (a), there exist $t, a \in X$ such that $t = fa \in Fa$. Since $a \in C(f, F)$, So ffa = fa and $ffa \in Ffa$. Hence, $ft = t \in Ft$.

Example 3.2. Consider $X = [1, \infty)$ with the max S-metric. Define $f : X \longrightarrow X$, $F : X \longrightarrow CB(X)$ as $f(x) = x^3$ and $F(x) = \left[1, \frac{x^2+1}{2x}\right]$ respectively. The pair (f, F) satisfies the limit property. In fact, we have

$$\lim_{n \to \infty} f(1 + \frac{1}{n}) = 1 \in \lim_{n \to \infty} F(1 + \frac{1}{n}) = \{1\}.$$

For any two distinct elements $x, y \in X$, the inequality (1) holds. For example, in the case x < y, by Remark 2.9 we have

$$S_H(Fx, Fx, Fy) = 2H_S(Fx, Fy) = \frac{y^2 + 1}{y} - 2.$$

On the other hand, $S(fx, fx, fy) = S(Fx^3, Fx^3, Fy^3) = y^3 - 1$. So,

$$\begin{split} S_H(Fx,Fx,Fy) &< \max\{S(fx,fx,fy),S(fx,fx,Fx)+S(fy,fy,Fy),\\ S(fx,fx,Fy)+S(fy,fy,Fx)\}. \end{split}$$

Hence, by Theorem 3.1, f and F have a coincidence point. That is, $f(1) \in F(1)$. Since ff(1) = f(1) and $ff(1) \in F(1)$, f and F have common fixed point 1.

Theorem 3.3. Let f be a self-mapping on a complete S-metric space (X, S) and let F be a multi-valued mapping from X into K(X) and let $\lambda \in (0, \frac{2}{3})$ be a constant such that for all two distinct members $x, y \in X$:

$$S_H(Fx, Fx, Fy) \leq \lambda \max\{S(fx, fx, fy), S(fx, fx, Fx), S(fy, fy, Fy), S(fx, fx, Fy) + S(fy, fy, Fx)\}.$$
(2)

If fX is a closed subset of X and $Fx \subseteq K(fX)$, then

- (a): f and F have a coincidence point;
- (b): f and F have a common fixed point provided that for each $v \in C(f, F)$, f is F-weakly commuting at v and ffv = fv, where $C(f, F) = \{a \in X : fa \in Fa\}$.

Proof. Since for each $x_0 \in X$, $\emptyset \neq Fx_0 \subseteq fX$, there exists $x_1 \in X$ such that $y_1 = fx_1 \in Fx_0$. So, by Lemma 3.11 [14], there exists $y_2 = fx_2 \in Fx_1$ such that

$$S(y_1, y_1, y_2) < \frac{1}{2}S_H(Fx_0, Fx_0, Fx_1) + \lambda.$$

We obtain a sequence $\{y_n\}$ such that $y_n = fx_n \in Fx_{n-1}$ and

$$\begin{split} S(y_n, y_n, y_{n+1}) &< \frac{1}{2} S_H(Fx_{n-1}, Fx_{n-1}, Fx_n) + \lambda^n \\ &\leqslant \frac{\lambda}{2} \max\{S(fx_{n-1}, fx_{n-1}, fx_n), S(fx_{n-1}, fx_{n-1}, Fx_{n-1}), \\ S(fx_n, fx_n, Fx_n), S(fx_{n-1}, fx_{n-1}, Fx_n) + S(fx_n, fx_n, Fx_{n-1})\} + \lambda^n. \end{split}$$

A. POURGHOLAM ET AL.

Set $a_n = S(y_n, y_n, y_{n+1})$. Since $fx_n \in Fx_{n-1}$, $S(fx_n, fx_n, Fx_{n-1}) = 0$. So, $a_n < \frac{\lambda}{2} \max\{a_{n-1}, S(fx_{n-1}, fx_{n-1}, Fx_{n-1}), S(fx_n, fx_n, Fx_n),$ $S(fx_{n-1}, fx_{n-1}, Fx_n)\} + \lambda^n.$

We know

$$\begin{split} S(fx_{n-1}, fx_{n-1}, Fx_{n-1}) &\leqslant S(fx_{n-1}, fx_{n-1}, fx_n) = a_{n-1}, S(fx_n, fx_n, Fx_n) \leqslant a_n, \\ S(fx_{n-1}, fx_{n-1}, Fx_n) &\leqslant S(y_{n-1}, y_{n-1}, y_{n+1}) \leqslant 2S(y_{n-1}, y_{n-1}, y_n) \\ &+ S(y_{n+1}, y_{n+1}, y_n) = 2a_{n-1} + a_n. \end{split}$$

So, $a_n < \frac{\lambda}{2}(2a_{n-1} + a_n) + \lambda^n$. That is, $a_n < \frac{\lambda}{1-\frac{\lambda}{2}}a_{n-1} + \frac{\lambda^n}{1-\frac{\lambda}{2}}$. By induction, we have

$$a_n < \left(\frac{\lambda}{1-\frac{\lambda}{2}}\right)^n \left[a_0 + 1 + (1-\frac{\lambda}{2}) + (1-\frac{\lambda}{2})^2 + \dots + \left(1-\frac{\lambda}{2}\right)^{n-1}\right]$$
$$\leqslant \left(\frac{\lambda}{1-\frac{\lambda}{2}}\right)^n \left[a_0 + 1 + (n-1)(1-\frac{\lambda}{2})\right].$$
Set $b_n = \left(\frac{\lambda}{1-\frac{\lambda}{2}}\right)^n \left[a_0 + 1 + (n-1)(1-\frac{\lambda}{2})\right].$

Since $\lim_{n\to\infty} \frac{b_{n+1}}{b_n} = \frac{\lambda}{1-\frac{\lambda}{2}} < 1$, so, $\lim_{n\to\infty} a_n = 0$. Now, we show that $\{y_n\}$ is a Cauchy sequence. For all $m, n \in N, m \ge n$, by Lemma 3.1 [18]

$$S(y_n, y_n, y_m) \le 2 \sum_{i=n}^{m-2} a_i + a_{m-1}$$

$$\le 2 \sum_{i=n}^{\infty} (\frac{2\lambda}{2-\lambda})^i [a_0 + 1 + (i-1)(1-\frac{\lambda}{2})] + (\frac{2\lambda}{2-\lambda})^{m-1} [a_0 + 1 + (m-2)(1-\frac{\lambda}{2})].$$

Therefore, $\lim_{n,m\to\infty} S(y_n, y_n, y_m) = 0$. So, there exists $u \in X$ such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} y_n = u$. Since fX is closed, there exists $a \in X$ such that fa = u. By putting $x = x_n, y = x_m$ in (2):

$$S_H(Fx_n, Fx_n, Fx_m) \leqslant \lambda \max\{S(fx_n, fx_n, fx_m), S(fx_n, fx_n, Fx_n), S(fx_m, fx_m, Fx_m), S(fx_n, fx_n, Fx_m) + S(fx_m, fx_m, Fx_n)\}$$
(3)

Also:

$$S(fx_n, fx_n, Fx_n) \leqslant S(y_n, y_n, y_{n+1}); \tag{4}$$

$$S(fx_m, fx_m, Fx_m) \leqslant S(y_m, y_m, y_{m+1}); \tag{5}$$

$$S(fx_n, fx_n, Fx_m) \leq S(y_n, y_n, y_{m+1});$$

$$S(fx_n, fx_n, Fx_m) \leq S(y_n, y_n, y_{m+1});$$

$$(6)$$

$$S(fx_m, fx_m, Fx_n) \leqslant S(y_m, y_m, y_{n+1}).$$
(7)

Relations (4-7) imply $\lim_{m,n\to\infty} S_H(Fx_n, Fx_n, Fx_m) = 0$. So, $\{Fx_n\}$ is a Cauchy sequence. Hence, by Theorem 2.10 there exists $A \in K(X)$ such that $\lim_{n\to\infty} Fx_n = A$. Since $S(y_n, y_n, A) \leq \frac{1}{2}S_H(Fx_{n-1}, Fx_{n-1}, A)$. So, $\lim_{n\to\infty} S(y_n, y_n, A) = 0$. By Lemma 3.4 [14], for every *n*, there exists $\alpha_n \in A$ such that $S(y_n, y_n, A) = S(y_n, y_n, \alpha_n)$. Hence, $\lim_{n\to\infty} S(y_n, y_n, \alpha_n) = 0$. Lemma 2.1 [17], implies $\lim_{n\to\infty} \alpha_n = u \in A$. So (f, F) satisfies the limit property. The rest of the proof is similar to Theorem 3.1.

Example 3.4. Consider X = [0, 1] with the max S-metric. For $fx = x^3$ and $Fx = [0, \frac{x^3}{8}]$, the inequality (2) holds for all two distinct members $x, y \in X$. For example, in case x < y, by Remark 2.9, $H_S(Fx, Fy) = \frac{y^3}{8}$. Hence

$$S_{H}(Fx, Fx, Fy) = 2H_{S}(Fx, Fy) = \frac{y^{3}}{4} = \frac{1}{4}S(fx, fx, fy) \leqslant \frac{1}{4}\max\{S(fx, fx, fy), S(fx, fx, Fy), S(fx, fx, Fy), S(fx, fx, Fy) + S(fy, fy, Fx)\}.$$

We have fX = X and $FX \subseteq K(fX)$. So all conditions of Theorem 3.3 are satisfied. Hence, f and F have common fixed point 0.

Theorem 3.5. Let f, g be two self-mappings on an S-metric (X, S) and let F, G be two multi-valued mappings from X into CB(X) such that

(1): The pairs (f, F) and (g, G) satisfy the common limit property;

(2): For all two distinct members $x, y \in X$:

$$S_{H}(Fx, Fx, Gy) < \max\{S(fx, fx, gy), S(fx, fx, Fx) + S(gy, gy, Gy), \\S(fx, fx, Gy) + S(gy, gy, Fx)\}.$$
(8)

If fX, gX are closed subsets of X, then

- (a): f and F have coincidence point;
- (b): g and G have coincidence point;
- (c): f and F have common fixed point provided that for each $v \in C(f, F)$, f be an F-weakly commuting at v and ffv = fv;
- (d): g and G have common fixed point provided that for each $v \in C(g,G), g$ be a G-weakly commuting at v and ggv = gv;
- (e): If (c) and (d) hold, then f, g, F and G have common fixed point.

Proof. By assumption, there exist sequences $\{x_n\}, \{y_n\}$ in X and $u \in X, A, B \in CB(X)$ such that $\lim_{n\to\infty} Fx_n = A$, $\lim_{n\to\infty} Gy_n = B$ and $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gy_n = B$.

 $u \in A \cap B$. Assume that $v, w \in X$ such that $\lim_{n \to \infty} fx_n = fv$ and $\lim_{n \to \infty} gy_n = fv$ gw. We have $fv = gw = u \in A \cap B$. To prove (a), we show, $u = fv \in Fv$. Put x = v and $y = y_n$ in (8) and approach n to ∞ , then $S_H(Fv, Fv, B) \leq S(fv, fv, Fv)$. Since

$$u = fv \in B, 2S(fv, fv, Fv) \leq S_H(Fv, Fv, B),$$

so, S(fv, fv, Fv) = 0. Therefore, $u = fv \in Fv$. Similarly, put $x = x_n, y = w$ in (8) and we have $u = gw \in Gw$. Properties (c), (d), (e) are similar to Theorem 3.1(b). \square

Example 3.6. Consider $X = [0, \infty)$ with the max S-metric. For $fx = x^3, Fx =$ $[0, \frac{x^3}{8}]$ and $gx = x^4, Gx = [0, \frac{x^4}{8}]$, the pairs (f, F) and (g, G) satisfy the common limit property, in fact

$$\lim_{n \to \infty} f(\frac{1}{n}) = \lim_{n \to \infty} g(\frac{1}{n}) = 0, \lim_{n \to \infty} F(\frac{1}{n}) = \lim_{n \to \infty} G(\frac{1}{n}) = \{0\}.$$

For all distinct members $x, y \in X$, the inquality (8) holds. For example, in case x < y, first assume $x^3 < y^4$. Since, for $t \in Fx$, S(t, t, Gy) = 0, so, $h_S(Fx, Gy) = 0$. Also since, for $t \in Gy$, we have

$$S(t,t,Fx) = \begin{cases} 0 & if \ t \in Fx \\ t & if \ t \in Gy - Fx \end{cases}$$

so, $h_S(Gy, Fx) = \sup\{S(t, t, Fx) : t \in Gy\} = \frac{y^4}{8}$. Hence, $H_S(Fx, Gy) = \frac{y^4}{8}$ and $S_H(Fx, Fx, Gy) = \frac{y^4}{4}$. On the other hand, we have $S(fx, fx, gy) = y^4$, therefore the inequality (8) holds. Now, assume $y^4 < x^3$. It can be shown that $S_H(Fx, Fx, Gy) = \frac{x^3}{4}$.

On the other hand, we have $S(fx, fx, gy) = x^3$, so the inequality (8) holds. We have $ff0 = f0 = 0 \in Ff0$, and $gg0 = g0 = 0 \in Gg0$. So, all conditions of Theorem 3.5 are satisfied. Therefore, f, g, F and G have common fixed point. That is, $f0 = g0 = 0 \in F0 \cap G0 = \{0\}.$

Corollary 3.7. If in Theorem 3.5 we set F = G, and f = g, Theorem 3.1 follows.

Theorem 3.8. Let f, g be two self-mappings on a complete S-metric space (X, S)and let F, G be two multi-valued mappings from X into K(X) and let $\lambda \in (0, \frac{2}{3})$ be a constant such that for all two distinct members $x, y \in X$:

$$S_H(Fx, Fx, Gy) \leq \lambda \max\{S(fx, fx, gy), S(fx, fx, Fx), S(gy, gy, Gy), S(fx, fx, Gy) + S(gy, gy, Fx)\}.$$
(9)

If fX, gX are closed subsets of X and $FX \subseteq K(gX), GX \subseteq K(fX)$, then

- (a): f and F have coincidence point;
- (b): g and G have coincidence point;
- (c): f and F have common fixed point provided that for each $v \in C(f, F)$, f be an *F*-weakly commuting mapping at v and ffv = fv;

- (d): g and G have common fixed point provided that for each $v \in C(g, G)$, g is an G-weakly commuting mapping at v and ggv = gv;
- (e): If (c) and (d) hold, then f, g, F and G have common fixed point.

Proof. For $x_0 \in X$, there exists $x_1 \in X$ such that $y_1 = gx_1 \in Fx_0$. So, by Lemma 3.11 [14], there exists $y_2 \in Gx_1$ such that

$$S(y_1, y_1, y_2) < \frac{1}{2}S_H(Fx_0, Fx_0, Gx_1) + \lambda.$$

There exists $x_2 \in X$ such that $y_2 = fx_2 \in Gx_1$. So, there exists $y_3 \in Fx_2$ such that

$$S(y_2, y_2, y_3) < \frac{1}{2}S_H(Gx_1, Gx_1, Fx_2) + \lambda^2.$$

We obtain a sequence $\{y_n\}$ such that for every $n \ge 1$,

$$y_{2n} = fx_{2n} \in Gx_{2n-1}, y_{2n+1} = gx_{2n+1} \in Fx_{2n}.$$

We have

$$\begin{split} S(y_{2n}, y_{2n}, y_{2n+1}) &< \frac{1}{2} S_H(Gx_{2n-1}, Gx_{2n-1}, Fx_{2n}) + \lambda^{2n};\\ S(y_{2n-1}, y_{2n-1}, y_{2n}) &< \frac{1}{2} S_H(Fx_{2n-2}, Fx_{2n-2}, Gx_{2n-1}) + \lambda^{2n-1}.\\ \text{Set } a_n &= S(y_n, y_n, y_{n+1}). \text{ Similar to Theorem 3.3, it can be shown that}\\ a_{2n} &< \frac{\lambda}{2} (2a_{2n-1} + a_{2n}) + \lambda^{2n}, \ a_{2n-1} &< \frac{\lambda}{2} (2a_{2n-2} + a_{2n-1}) + \lambda^{2n-1}.\\ \text{So, for every } n \in N, \text{ we have} \end{split}$$

 $a_n < \frac{\lambda}{2}(2a_{n-1} + a_n) + \lambda^n$. Similar to Theorem 3.3, we have $\lim_{n\to\infty} a_n = 0$ and $\{y_n\}$ is a Cauchy sequence. So, there exists $u \in X$ such that $\lim_{n\to\infty} y_n = u$. Hence, $\lim_{n\to\infty} fx_{2n} = \lim_{n\to\infty} gx_{2n+1} = u$, and there exist $a, b \in X$ such that fa = gb = u. To show $\{Fx_{2n}\}$ is a Cauchy sequence, we have

$$S_H(Fx_{2n}, Fx_{2n}, Fx_{2m}) \leq 2S_H(Fx_{2n}, Fx_{2n}, Gx_{2n+1}) + S_H(Fx_{2m}, Fx_{2m}, Gx_{2n+1}).$$
(10)

By (9) we have:

$$S_{H}(Fx_{2n}, Fx_{2n}, Gx_{2n+1}) \leq \lambda \max\{S(fx_{2n}, fx_{2n}, gx_{2n+1}), S(fx_{2n}, fx_{2n}, Fx_{2n}), S(gx_{2n+1}, gx_{2n+1}, Gx_{2n+1}), S(fx_{2n}, fx_{2n}, Gx_{2n+1}) + S(gx_{2n+1}, gx_{2n+1}, Fx_{2n})\}.$$

So, $\lim_{n\to\infty} S_H(Fx_{2n}, Fx_{2n}, Gx_{2n+1}) = 0$. Similarly, we have $\lim_{n\to\infty} S_H(Fx_{2m}, Fx_{2m}, Gx_{2n+1}) = 0$. It follows from (10) that $\lim_{n,m\to\infty} S_H(Fx_{2n}, Fx_{2n}, Fx_{2m}) = 0$. So, by Theorem 2.10, there exists $A \in K(X)$ such that $\lim_{n\to\infty} Fx_{2n} = A$. Now, assume that the left side of inequality (9) is S(fx, fx, gy). Then, we have

$$S_H(Fx, Fx, Gy) \leqslant \lambda \ S(fx, fx, gy). \tag{11}$$

Put $x = x_{2n}, y = x_{2n+1}$ in (11) to obtain

$$S_H(Fx_{2n}, Fx_{2n}, Gx_{2n+1}) \leq \lambda \ S(fx_{2n}, fx_{2n}, gx_{2n+1})$$

So,

$$\lim_{n \to \infty} S_H(Fx_{2n}, Fx_{2n}, Gx_{2n+1}) = 0.$$

Since $\lim_{n\to\infty} Fx_{2n} = A$, by Lemma 2.1 [17], $\lim_{n\to\infty} Gx_{2n+1} = A$. Assume that the left side of inequality (9) is S(fx, fx, Gy) + S(gy, gy, Fx). Then, we have

$$S_H(Fx, Fx, Gy) \leq \lambda [S(fx, fx, Gy) + S(gy, gy, Fx)].$$
(12)

Put $x = x_{2n}, y = x_{2n+1}$ in (12) to obtain

$$S_{H}(Fx_{2n}, Fx_{2n}, Gx_{2n+1}) \leqslant \lambda [S(y_{2n}, y_{2n}, Gx_{2n+1}) + S(y_{2n+1}, y_{2n+1}, Fx_{2n})] \\ \leqslant \lambda [S(y_{2n}, y_{2n}, y_{2n+2}) + S(y_{2n+1}, y_{2n+1}, y_{2n+1})].$$

So,

$$\lim_{n \to \infty} S_H(Fx_{2n}, Fx_{2n}, Gx_{2n+1}) = 0.$$

Therefore, by Lemma 2.1 [17], $\lim_{n\to\infty} Gx_{2n+1} = A$. Similarly, if the left side of inequality (9) is S(fx, fx, Fx) or S(gy, gy, Gy), we have $\lim_{n\to\infty} Gx_{2n+1} = A$. On the other hand, we have:

$$S(y_{2n+1}, y_{2n+1}, A) \leq \frac{1}{2} S_H(Fx_{2n}, Fx_{2n}, A).$$

So, $\lim_{n\to\infty} S(y_{2n+1}, y_{2n+1}, A) = 0$. By Lemma 3.4 [14], for every n, there exists $\alpha_{2n+1} \in A$ such that,

 $S(y_{2n+1}, y_{2n+1}, A) = S(y_{2n+1}, y_{2n+1}, \alpha_{2n+1}).$

So, $\lim_{n\to\infty} S(y_{2n+1}, y_{2n+1}, \alpha_{2n+1}) = 0$. Hence, by Lemma 2.1 [17], $\lim_{n\to\infty} \alpha_{2n+1} = u$. So $u \in A$. That is, (f, F), (g, G) satisfy the common limit property. The rest of the proof is similar to Theorem 3.5.

Example 3.9. In Example 3.6, for all distinct members $x, y \in X$:

$$S_H(Fx, Fx, Gy) = \frac{1}{4}S(fx, fx, gy)$$

$$\leqslant \frac{1}{4} \max\{S(fx, fx, gy), S(fx, fx, Fx), S(gy, gy, Gy), S(fx, fx, Gy) + S(gy, gy, Fx)\}.$$

So, all conditions of Theorem 3.8 are satisfied. That is, f, g, F and G have common fixed point.

Corollary 3.10. If in Theorem 3.8 we set F = G, and f = g, Theorem 3.3 follows.

4. CONCLUSIONS

We generalized some theorems in fixed point theorem work. Theorem 3.1 is a generalization of Theorem 3.4 of Tayyab Kamran, 2004 [10]. Theorem 3.5 and Theorem 3.8 are generalizations of Theorem 2.3 and Theorem 2.8 of Yicheng Liu, Jun Wu, Zhixiang Li, 2005 [19], for single-valued and multi-valued mappings on *S*-metric and S_H -metric spaces respectively. We showed that not every *S*-metric is necessarily continuous.

The notion of compatible for single-valued and multi-valued mappings can be defined to investigate the existence of fixed points in *S*-metric spaces. Also, the existence of solution for certain nonlinear integral equations can be investigated in a future work.

Acknowledgement

The authors would like to express their appreciation to the referee for his/ her valuable comments and suggestions that improved the original version.

REFERENCES

- Afshari, H., Jarad, F., and Abdeljawad, T., "On a new fixed point theorem with on application on a coupled system of fractional di erential equations", *Adv. Differ. Equ.*2020, Article No. 461 (2020), 1-13, https://doi.org/10.1186/s13662-020-02926-0.
- Bakhtin, I.A., "The contraction mapping principal in almost metric spaces", Funct. Anal., 30 (1989), 26-37.
- [3] Baleanu, D., Etemad, S., and Rezapour, S., "On a fractional hybrid multi-term integrodifferential inclusion with four-point sum and integral boundary conditions", Adv. Differ. Equ. 2020, Article No. 25 (2020), 1-20, https://doi.org/10.1186/s13662-020-02713-x.
- [4] Dhage, B.C., "Generalized metric spaces mappings with fixed point", Bull. Cal. Math. Soc., 84 (1992), 329-336.
- [5] Dung, N.V., and Hieu, S. Radojevic, N.T., "Fixed point theorems for g-monotone maps on partially ordered S-metric spaces", *Filomat*, (2014), 1885-1898.
- [6] Etemad, S., Hussain, A., Imran, A., Alzabut, J., Rezapour, S., and George, A., "On a fractional cantilever beam model in the q-difference inclusion settings via special multi-valued operators", J Inequal Appl 2021, Article No. 174 (2021), 1-20, https://doi.org/10.1186/s13660-021-02708-6.
- [7] S. Etemad, Rezapour, S., and Samei, M.E., "α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results", Adv. Differ. Equ. 2020, Article No. 218 (2020), 1-40, https://doi.org/10.1186/s13662-020-02679-w.
- [8] Etemad, S., Souid, M.S., Telli, B., Kaabar, M.K.A., and Rezapour, S., "Investigation of the neutral fractional differential inclusions of Katugampola-type involving both retarded and advanced arguments via Kuratowski MNC technique", Adv. Differ. Equ. 2021, Article No. 214 (2021), 1-20, https://doi.org/10.1186/s13662-021-03377-x.
- [9] Gupta, V., Deep, R., "Some coupled fixed point theorems in partially ordered S-metric spaces", Miskols mathematical notes, 16:1 (2015), 181-194.
- [10] Kamran, T., "Coincidence and fixed points for hybrid strict contractions", J. Math. Anal. Appl., 2991 (2004), 235-241.

A. POURGHOLAM ET AL.

- [11] Mohammadi, H., Rezapour, S., Etemad, S., and Baleanu, D., "Two sequential fractional hybrid differential inclusions", Adv. Differ. Equ. 2020, Article No. 385 (2020), 1-24, https://doi.org/10.1186/s13662-020-02850-3.
- [12] Mojaradiafra, J., and Sabbaghan, M., "Some new applications of S-metric spaces by weakly compatible pairs with limit property", J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math, 28:1, (2021), 1-13.
- [13] Nyein, E.E., and Zaw, A.K., "Quasi (s,r)-contractive multi-valued operators on b-metric space and related fixed point theorems", J. Indones. Math. Soc. , 26:3, (2020), 393-402.
- [14] Pourgholam, A., and Sabbaghan, M., " S_H -metric spaces and fixed point theorems for multivalued weak contraction mappings", *Mathematical science*, **15:4**, (2021), 377-385.
- [15] Sedghi, S., and Shobe, N., "Fixed point theorem in M-fuzzy metric spaces with property (E)", Adv in fuzzy Math, 1:1, (2006), 55-65.
- [16] Sedghi, S., Shobe, N., and Aliouche, A., "A generalization of fixed point theorems in S-metric spaces", Mat. Vesn, 64:3, (2012), 258-266.
- [17] Sedghi, S., Shobkolaei, N., Shahraki, M., and Dosenovic, T., "Common fixed point of four maps in S-metric spaces", *Mathematical Sciences*, (2018), 137-143.
- [18] Shrivastava, S., Daheriya, R., and Ughade, M., "S-metric space, expanding mappings & fixed point theorems", International journal of scientific and innovative mathematical research, (2006), 1-12.
- [19] Yicheng, L., Jun, W., and Zhixiang, L., "Common fixed points of single-valued and multivalued maps", *International Journal of mathematics and mathematical sciences*, (2005), 3045-3055.