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Abstract. In this paper, the notion of limit property (-Tayyab kamran, 2004-) and

common limit property (-Yicheng Liu & Jun Wu & Zhixiang Li, 2005-) for single-

valued and multi-valued mappings on metric spaces are generalized to S-metric

spaces. This idea is used to make some common fixed point theorems for single-

valued and multi-valued mappings by using a generalization of coincidence point in

S-metric spaces. We give an example of an S-metric which is not continuous.
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1. INTRODUCTION

Metric spaces are very important in mathematics. Generalized metric spaces
can be pointed out as b-metric, D-metric and fuzzy metric spaces. For more consid-
erations, see [2, 13, 4, 15]. In 2012, another generalized metric space called S-metric
space was introduced by Sedghi et al. [16]. In the setting of S-metric space see, for
example [5, 9, 12, 14], and the references therein. For application of fixed points
and common fixed points in different fields such as fractional calculus, existence
theory in fractional boundary value problems, see [1, 3, 6, 7, 8, 11].
In this paper, some common fixed point theorems for single-valued and multi-
valued mappings are proved in S-metric spaces by using a generalization of coinci-
dence point for pairs (f, F ), (f, F ) and (g,G) in which the mappings f and g are
single-valued and the mappings F and G are multi-valued mappings with values in
S-metric space (CB(X), SH), where SH is the Hausdorff S-metric.
In section 2, some preliminaries are recalled. In section 3, we state our main theo-
rem. Section 4 is the conclusions.
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2. PRELIMINARIES

In this section some definitions, lemmas, theorems, and example are recalled.

Definition 2.1. [16] For nonempty set X, S : X3 −→ [0,∞) is called an S-metric
on X if

(1): S(x, y, z) = 0 iff x = y = z;
(2): S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a),

for all x, y, z, a ∈ X. (X,S) is called an S-metric space.

Example 2.2. (1): Assume α ≥ 0 and X = [α,∞). Define
S : X3 −→ [0,∞) by

S(x, y, z) =

{
0 if x = y = z;

max{x, y, z} − α otherwise.

The mapping S is an S-metric on X. We call it the max S-metric.
(2): Let X = [0,∞). Define S : X3 −→ [0,∞) by

S(x, y, z) =

{
0 if x = y = z;

x+ y + 2z otherwise.

Then, S is an S-metric on X.

Definition 2.3. [16] In S-metric space (X,S), assume that x is an

element of X, and r > 0.

(1): An open ball Bs(x, r) with center x and radius r is defined by Bs(x, r) =
{y ∈ X : S(y, y, x) < r}.

(2): A sequence {yn} in X converges to y if limn→∞ S(yn, yn, y) = 0. In this
case, we write yn → y or limn→∞ yn = y.

(3): A sequence {yn} in X is called a Cauchy sequence if
limn,m→∞ S(yn, yn, ym) = 0.

(4): (X,S) is called complete if every Cauchy sequence converges.
(5): A subset A of X is called bounded if there exists ε > 0 such that for all
a, b ∈ A, S(a, a, b) < ε.

In (X,S), we set τ = {A ⊆ X : A is a union of open balls}. τ is a topology and
we set CB(X) = {A ⊆ X : A is nonempty closed and bounded}.

Example 2.4. Consider X = [0,∞) with the max S-metric. Then, for a ∈ X and

r > 0, we have: Bs(a, r) =

{
[0, r) if a < r;

{a} if a ≥ r.

Definition 2.5. Let (X,S) be an S-metric space. We say S is continuous if
S(xn, yn, zn)→ S(x, y, z), whenever xn → x, yn → y, zn → z.

Example 2.6. On X = [0,∞), define

S(x, y, z) =

{
1 if (x, y, z) = (1, 2, 3);

|x− z|+ |y − z| otherwise.
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S is a S-metric on X and it is not continuous. In fact, we have:

xn = 1 +
1

n
→ 1, yn = 2 +

2

n
→ 2, zn = 3 +

3

n
→ 3.

But

3 = lim
n→∞

S(xn, yn, zn) 6= S(1, 2, 3) = 1.

Definition 2.7. Let (X,S) be an S-metric space. We define
SH : CB(X)3 −→ [0,∞), by

SH(A,B,C) = Hs(A,C) +Hs(B,C),

where Hs(A,B) = max{hS(A,B), hS(B,A)},
hs(A,B) = sup{S(a, a,B) : a ∈ A} and

S(a, a,B) = inf{S(a, a, b) : b ∈ B}.
For more information see [14].

Theorem 2.8. [14] SH is an S-metric on CB(X).

We call SH the Hausdorff S-metric on CB(X) generated by S.

Remark 2.9. In Example 2.2(1) let u be a nondecreasing continuous function on
X = [α,∞) and let F (x) = [α, u(x)]. We have:

Hs(Fx, Fy) =

{
u(y)− α if y ≥ x;

u(x)− α if x > y.

Let (X,S) be an S-metric space. The set of all nonempty compact subsets
of X is denoted by K(X).

Theorem 2.10. [14] Let (X,S) be a complete S-metric spaces.Then, (K(X), SH)
is a complete S-metric space.

The converse is also true. In fact, suppose that {xn} is a Cauchy sequence
in (X,S). By Theorem 3.4 [14], we have limn→∞ SH({xn}, {xn}, {xm}) =
2 limn→∞ S(xn, xn, xm)→ 0. That is, {{xn}} is a Cauchy sequence in (K(X), SH).
So, by Lemma 3.9 [14], there exists x ∈ X such that {xn} → {x}. That is, xn → x.

Definition 2.11. Let (X,S) be an S-metric space.

(1) The mappings f : X −→ X and F : X −→ CB(X) are given. We say f and
F have a coincidence point at a ∈ X if f(a) ∈ F (a), also, we say f and F have a
common fixed point at a ∈ X if f(a) = a ∈ F (a).

(2) The mapping F : X −→ CB(X) is given. We say the mapping f : X −→ X is
F -weakly commuting at x ∈ X if f(f(x)) ∈ F (f(x)).

Definition 2.12. Let (X,S) be an S-metric space. The mappings f, g : X −→ X
and F,G : X −→ CB(X) are given.
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(1) We say the pair (f, F ) satisfies the limit property if there exist a sequence {xn}
in X, some t ∈ X and A ∈ CB(X) such that limn→∞ fxn = t ∈ A = limn→∞ Fxn
(see [10]).

(2) We say The pairs (f, F ) and (g,G) satisfy the common limit property if there
exist two sequences {xn} and {yn} in X, t ∈ X, and A,B ∈ CB(X) such that
limn→∞ Fxn = A, limn→∞Gyn = B, limn→∞ fxn = limn→∞ gyn = t ∈ A ∩B
(see [19]).

3. MAIN RESULT

In this section we state our mean theorem. Some examples and theorems
follow up.

Theorem 3.1. Let f be a self-mapping on an S-metric space (X,S) and let F be
a multi-valued mapping from X into CB(X) such that

(1): The pair (f, F ) satisfies the limit property;
(2): For all two distinct elements x, y ∈ X,

SH(Fx, Fx, Fy) < max{S(fx, fx, fy), S(fx, fx, Fx) + S(fy, fy, Fy),

S(fx, fx, Fy) + S(fy, fy, Fx)}. (1)

If fX is a closed subset of X, then

(a): f and F have a coincidence point.
(b): f and F have a common fixed point provided that for each v ∈ C(f, F ),

the mapping f is F -weakly commuting at v and ffv = fv, where C(f, F ) =
{a ∈ X : fa ∈ Fa}.

Proof. By assumption, there exist a sequence {xn} in X, t ∈ X and A ∈ CB(X)
such that limn→∞ f(xn) = t ∈ limn→∞ Fxn = A. Also there exists a ∈ X such
that t = f(a). We put x = xn and y = a in inequality (1) to obtain:

SH(Fxn, Fxn, Fa) < max{S(fxn, fxn, fa), S(fxn, fxn, Fxn) + S(fa, fa, Fa),

S(fxn, fxn, Fa) + S(fa, fa, Fxn)}.

By Lemma 3.3 [14], It follows that

lim
n→∞

SH(Fxn, Fxn, Fa) = SH(A,A, Fa) 6 S(fa, fa, Fa).

By definition of SH we have

2S(fa, fa, Fa) 6 SH(A,A, Fa) 6 S(fa, fa, Fa).

That is, S(fa, fa, Fa) = 0. So, f(a) ∈ F (a). This proves (a). To prove (b), by (a),
there exist t, a ∈ X such that t = fa ∈ Fa. Since a ∈ C(f, F ), So ffa = fa and
ffa ∈ Ffa. Hence, ft = t ∈ Ft. �
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Example 3.2. Consider X = [1,∞) with the max S-metric. Define f : X −→ X,

F : X −→ CB(X) as f(x) = x3 and F (x) =
[
1, x

2+1
2x

]
respectively. The pair (f, F )

satisfies the limit property. In fact, we have

lim
n→∞

f(1 +
1

n
) = 1 ∈ lim

n→∞
F (1 +

1

n
) = {1}.

For any two distinct elements x, y ∈ X, the inequality (1) holds. For example, in
the case x < y, by Remark 2.9 we have

SH(Fx, Fx, Fy) = 2HS(Fx, Fy) =
y2 + 1

y
− 2.

On the other hand, S(fx, fx, fy) = S(Fx3, Fx3, Fy3) = y3 − 1. So,

SH(Fx, Fx, Fy) < max{S(fx, fx, fy), S(fx, fx, Fx) + S(fy, fy, Fy),

S(fx, fx, Fy) + S(fy, fy, Fx)}.

Hence, by Theorem 3.1, f and F have a coincidence point. That is, f(1) ∈
F (1). Since ff(1) = f(1) and ff(1) ∈ F (1), f and F have common fixed point 1.

Theorem 3.3. Let f be a self-mapping on a complete S-metric space (X,S) and

let F be a multi-valued mapping from X into K(X) and let λ ∈ (0,
2

3
) be a constant

such that for all two distinct members x, y ∈ X:

SH(Fx, Fx, Fy) 6 λmax{S(fx, fx, fy), S(fx, fx, Fx), S(fy, fy, Fy),

S(fx, fx, Fy) + S(fy, fy, Fx)}. (2)

If fX is a closed subset of X and Fx ⊆ K(fX), then

(a): f and F have a coincidence point;
(b): f and F have a common fixed point provided that for each v ∈ C(f, F ),
f is F -weakly commuting at v and ffv = fv, where C(f, F ) = {a ∈ X :
fa ∈ Fa}.

Proof. Since for each x0 ∈ X, ∅ 6= Fx0 ⊆ fX, there exists x1 ∈ X such that
y1 = fx1 ∈ Fx0. So, by Lemma 3.11 [14], there exists y2 = fx2 ∈ Fx1 such that

S(y1, y1, y2) <
1

2
SH(Fx0, Fx0, Fx1) + λ.

We obtain a sequence {yn} such that yn = fxn ∈ Fxn−1 and

S(yn, yn, yn+1) <
1

2
SH(Fxn−1, Fxn−1, Fxn) + λn

6
λ

2
max{S(fxn−1, fxn−1, fxn), S(fxn−1, fxn−1, Fxn−1),

S(fxn, fxn, Fxn), S(fxn−1, fxn−1, Fxn) + S(fxn, fxn, Fxn−1)}+ λn.
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Set an = S(yn, yn, yn+1). Since fxn ∈ Fxn−1, S(fxn, fxn, Fxn−1) = 0. So,

an <
λ

2
max{an−1, S(fxn−1, fxn−1, Fxn−1), S(fxn, fxn, Fxn),

S(fxn−1, fxn−1, Fxn)}+ λn.

We know

S(fxn−1, fxn−1, Fxn−1) 6 S(fxn−1, fxn−1, fxn) = an−1, S(fxn, fxn, Fxn) 6 an,

S(fxn−1, fxn−1, Fxn) 6 S(yn−1, yn−1, yn+1) 6 2S(yn−1, yn−1, yn)

+ S(yn+1, yn+1, yn) = 2an−1 + an.

So, an <
λ
2 (2an−1 + an) + λn. That is, an <

λ
1−λ2

an−1 + λn

1−λ2
. By induction, we

have

an <

(
λ

1− λ
2

)n [
a0 + 1 + (1− λ

2
) + (1− λ

2
)2 + · · ·+

(
1− λ

2

)n−1]

6

(
λ

1− λ
2

)n [
a0 + 1 + (n− 1)(1− λ

2
)

]
.

Set bn =

(
λ

1− λ
2

)n [
a0 + 1 + (n− 1)(1− λ

2
)

]
.

Since limn→∞
bn+1

bn
=

λ

1− λ
2

< 1, so, limn→∞ an = 0.

Now, we show that {yn} is a Cauchy sequence.

For all m,n ∈ N,m > n, by Lemma 3.1 [18]

S(yn, yn, ym) ≤ 2

m−2∑
i=n

ai + am−1

≤ 2

∞∑
i=n

(
2λ

2− λ
)i[a0 + 1 + (i− 1)(1− λ

2
)] + (

2λ

2− λ
)m−1[a0 + 1 + (m− 2)(1− λ

2
)].

Therefore, limn,m→∞ S(yn, yn, ym) = 0. So, there exists u ∈ X such that
limn→∞ fxn = limn→∞ yn = u. Since fX is closed, there exists a ∈ X such that
fa = u. By putting x = xn, y = xm in (2) :

SH(Fxn, Fxn, Fxm) 6 λmax{S(fxn, fxn, fxm), S(fxn, fxn, Fxn),

S(fxm, fxm, Fxm), S(fxn, fxn, Fxm) + S(fxm, fxm, Fxn)} (3)



Common Fixed Points of Single-Valued and Multi-Valued Mappings 25

Also:

S(fxn, fxn, Fxn) 6 S(yn, yn, yn+1); (4)

S(fxm, fxm, Fxm) 6 S(ym, ym, ym+1); (5)

S(fxn, fxn, Fxm) 6 S(yn, yn, ym+1); (6)

S(fxm, fxm, Fxn) 6 S(ym, ym, yn+1). (7)

Relations (4− 7) imply limm,n→∞ SH(Fxn, Fxn, Fxm) = 0.
So, {Fxn} is a Cauchy sequence. Hence, by Theorem 2.10 there exists A ∈ K(X)
such that limn→∞ Fxn = A. Since S(yn, yn, A) 6 1

2SH(Fxn−1, Fxn−1, A). So,
limn→∞ S(yn, yn, A) = 0. By Lemma 3.4 [14], for every n, there exists αn ∈ A such
that S(yn, yn, A) = S(yn, yn, αn). Hence, limn→∞ S(yn, yn, αn) = 0. Lemma 2.1
[17], implies limn→∞ αn = u ∈ A. So (f, F ) satisfies the limit property. The rest
of the proof is similar to Theorem 3.1. �

Example 3.4. Consider X = [0, 1] with the max S-metric. For fx = x3 and

Fx = [0, x
3

8 ], the inequality (2) holds for all two distinct members x, y ∈ X. For

example, in case x < y, by Remark 2.9, HS(Fx, Fy) = y3

8 . Hence

SH(Fx, Fx, Fy) = 2HS(Fx, Fy) =
y3

4
=

1

4
S(fx, fx, fy) 6

1

4
max{S(fx, fx, fy),

S(fx, fx, Fx), S(fy, fy, Fy), S(fx, fx, Fy) + S(fy, fy, Fx)}.

We have fX = X and FX ⊆ K(fX). So all conditions of Theorem 3.3 are
satisfied. Hence, f and F have commn fixed point 0.

Theorem 3.5. Let f, g be two self-mappings on an S-metric (X,S) and let F,G
be two multi-valued mappings from X into CB(X) such that

(1): The pairs (f, F ) and (g,G) satisfy the common limit property;
(2): For all two distinct members x, y ∈ X:

SH(Fx, Fx,Gy) < max{S(fx, fx, gy), S(fx, fx, Fx) + S(gy, gy,Gy),

S(fx, fx,Gy) + S(gy, gy, Fx)}. (8)

If fX, gX are closed subsets of X, then

(a): f and F have coincidence point;
(b): g and G have coincidence point;
(c): f and F have common fixed point provided that for each v ∈ C(f, F ), f

be an F -weakly commuting at v and ffv = fv;
(d): g and G have common fixed point provided that for each v ∈ C(g,G), g

be a G-weakly commuting at v and ggv = gv;
(e): If (c) and (d) hold, then f, g, F and G have common fixed point.

Proof. By assumption, there exist sequences {xn}, {yn} in X and u ∈ X,A,B ∈
CB(X) such that limn→∞ Fxn = A, limn→∞Gyn = B and limn→∞ fxn = limn→∞ gyn =
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u ∈ A∩B. Assume that v, w ∈ X such that limn→∞ fxn = fv and limn→∞ gyn =
gw. We have fv = gw = u ∈ A ∩ B. To prove (a), we show, u = fv ∈ Fv. Put
x = v and y = yn in (8) and approach n to ∞, then
SH(Fv, Fv,B) 6 S(fv, fv, Fv). Since

u = fv ∈ B, 2S(fv, fv, Fv) 6 SH(Fv, Fv,B),

so, S(fv, fv, Fv) = 0. Therefore, u = fv ∈ Fv. Similarly, put x = xn, y = w in
(8) and we have u = gw ∈ Gw. Properties (c), (d), (e) are similar to Theorem
3.1(b). �

Example 3.6. Consider X = [0,∞) with the max S-metric. For fx = x3, Fx =

[0, x
3

8 ] and gx = x4, Gx = [0, x
4

8 ], the pairs (f, F ) and (g,G) satisfy the common
limit property, in fact

lim
n→∞

f(
1

n
) = lim

n→∞
g(

1

n
) = 0, lim

n→∞
F (

1

n
) = lim

n→∞
G(

1

n
) = {0}.

For all distinct members x, y ∈ X, the inquality (8) holds.
For example, in case x < y, first assume x3 < y4. Since, for t ∈ Fx, S(t, t, Gy) = 0,
so, hS(Fx,Gy) = 0. Also since, for t ∈ Gy, we have

S(t, t, Fx) =

{
0 if t ∈ Fx
t if t ∈ Gy − Fx,

so, hS(Gy, Fx) = sup{S(t, t, Fx) : t ∈ Gy} = y4

8 .

Hence, HS(Fx,Gy) = y4

8 and SH(Fx, Fx,Gy) = y4

4 .

On the other hand, we have S(fx, fx, gy) = y4, therefore the inequality (8) holds.

Now, assume y4 < x3. It can be shown that SH(Fx, Fx,Gy) = x3

4 .

On the other hand, we have S(fx, fx, gy) = x3, so the inequality (8) holds. We
have ff0 = f0 = 0 ∈ Ff0, and gg0 = g0 = 0 ∈ Gg0. So, all conditions of
Theorem 3.5 are satisfied. Therefore, f, g, F and G have common fixed point. That
is, f0 = g0 = 0 ∈ F0 ∩G0 = {0}.

Corollary 3.7. If in Theorem 3.5 we set F = G, and f = g, Theorem 3.1 follows.

Theorem 3.8. Let f, g be two self-mappings on a complete S-metric space (X,S)
and let F,G be two multi-valued mappings from X into K(X) and let λ ∈ (0, 23 ) be
a constant such that for all two distinct members x, y ∈ X :

SH(Fx, Fx,Gy) 6 λmax{S(fx, fx, gy), S(fx, fx, Fx), S(gy, gy,Gy),

S(fx, fx,Gy) + S(gy, gy, Fx)}. (9)

If fX, gX are closed subsets of X and FX ⊆ K(gX), GX ⊆ K(fX), then

(a): f and F have coincidence point;
(b): g and G have coincidence point;
(c): f and F have common fixed point provided that for each v ∈ C(f, F ), f

be an F -weakly commuting mapping at v and ffv = fv;
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(d): g and G have common fixed point provided that for each v ∈ C(g,G), g
is an G-weakly commuting mapping at v and ggv = gv;

(e): If (c) and (d) hold, then f, g, F and G have common fixed point.

Proof. For x0 ∈ X, there exists x1 ∈ X such that y1 = gx1 ∈ Fx0. So, by Lemma
3.11 [14], there exists y2 ∈ Gx1 such that

S(y1, y1, y2) <
1

2
SH(Fx0, Fx0, Gx1) + λ.

There exists x2 ∈ X such that y2 = fx2 ∈ Gx1. So, there exists y3 ∈ Fx2 such that

S(y2, y2, y3) <
1

2
SH(Gx1, Gx1, Fx2) + λ2.

We obtain a sequence {yn} such that for every n > 1,

y2n = fx2n ∈ Gx2n−1, y2n+1 = gx2n+1 ∈ Fx2n.

We have

S(y2n, y2n, y2n+1) <
1

2
SH(Gx2n−1, Gx2n−1, Fx2n) + λ2n;

S(y2n−1, y2n−1, y2n) <
1

2
SH(Fx2n−2, Fx2n−2, Gx2n−1) + λ2n−1.

Set an = S(yn, yn, yn+1). Similar to Theorem 3.3, it can be shown that

a2n <
λ

2
(2a2n−1+a2n)+λ2n, a2n−1 <

λ

2
(2a2n−2+a2n−1)+λ2n−1.

So, for every n ∈ N , we have
an <

λ
2 (2an−1 + an) + λn. Similar to Theorem 3.3, we have limn→∞ an = 0 and

{yn} is a Cauchy sequence. So, there exists u ∈ X such that limn→∞ yn = u.
Hence, limn→∞ fx2n = limn→∞ gx2n+1 = u, and there exist a, b ∈ X such that
fa = gb = u. To show {Fx2n} is a Cauchy sequence, we have

SH(Fx2n, Fx2n, Fx2m) 62SH(Fx2n, Fx2n, Gx2n+1)

+ SH(Fx2m, Fx2m, Gx2n+1). (10)

By (9) we have:

SH(Fx2n, Fx2n, Gx2n+1) 6 λmax{S(fx2n, fx2n, gx2n+1), S(fx2n, fx2n, Fx2n),

S(gx2n+1, gx2n+1, Gx2n+1), S(fx2n, fx2n, Gx2n+1) + S(gx2n+1, gx2n+1, Fx2n)}.

So, limn→∞ SH(Fx2n, Fx2n, Gx2n+1) = 0.
Similarly, we have limn→∞ SH(Fx2m, Fx2m, Gx2n+1) = 0. It follows from (10)
that limn,m→∞ SH(Fx2n, Fx2n, Fx2m) = 0. So, by Theorem 2.10, there exists A ∈
K(X) such that limn→∞ Fx2n = A. Now, assume that the left side of inequality
(9) is S(fx, fx, gy). Then, we have

SH(Fx, Fx,Gy) 6 λ S(fx, fx, gy). (11)
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Put x = x2n, y = x2n+1 in (11) to obtain

SH(Fx2n, Fx2n, Gx2n+1) 6 λ S(fx2n, fx2n, gx2n+1).

So,

lim
n→∞

SH(Fx2n, Fx2n, Gx2n+1) = 0.

Since limn→∞ Fx2n = A, by Lemma 2.1 [17], limn→∞Gx2n+1 = A. Assume that
the left side of inequality (9) is S(fx, fx,Gy) + S(gy, gy, Fx). Then, we have

SH(Fx, Fx,Gy) 6 λ[S(fx, fx,Gy) + S(gy, gy, Fx)]. (12)

Put x = x2n, y = x2n+1 in (12) to obtain

SH(Fx2n, Fx2n, Gx2n+1) 6λ[S(y2n, y2n, Gx2n+1) + S(y2n+1, y2n+1, Fx2n)]

6λ[S(y2n, y2n, y2n+2) + S(y2n+1, y2n+1, y2n+1)].

So,

lim
n→∞

SH(Fx2n, Fx2n, Gx2n+1) = 0.

Therefore, by Lemma 2.1 [17], limn→∞Gx2n+1 = A. Similarly, if the left side of
inequality (9) is S(fx, fx, Fx) or S(gy, gy,Gy), we have limn→∞Gx2n+1 = A. On
the other hand, we have:

S(y2n+1, y2n+1, A) 6
1

2
SH(Fx2n, Fx2n, A).

So, limn→∞ S(y2n+1, y2n+1, A) = 0. By Lemma 3.4 [14], for every n, there
exists α2n+1 ∈ A such that,

S(y2n+1, y2n+1, A) = S(y2n+1, y2n+1, α2n+1).

So, limn→∞ S(y2n+1, y2n+1, α2n+1) = 0. Hence, by Lemma 2.1 [17], limn→∞ α2n+1 =
u. So u ∈ A. That is, (f, F ), (g,G) satisfy the common limit property. The rest of
the proof is similar to Theorem 3.5. �

Example 3.9. In Example 3.6, for all distinct members x, y ∈ X:

SH(Fx, Fx,Gy) =
1

4
S(fx, fx, gy)

6
1

4
max{S(fx, fx, gy), S(fx, fx, Fx), S(gy, gy,Gy),

S(fx, fx,Gy) + S(gy, gy, Fx)}.
So, all conditions of Theorem 3.8 are satisfied. That is, f, g, F and G have common
fixed point.
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Corollary 3.10. If in Theorem 3.8 we set F = G, and f = g, Theorem 3.3 follows.

4. CONCLUSIONS

We generalized some theorems in fixed point theorem work. Theorem 3.1 is
a generalization of Theorem 3.4 of Tayyab Kamran, 2004 [10]. Theorem 3.5 and
Theorem 3.8 are generalizations of Theorem 2.3 and Theorem 2.8 of Yicheng Liu,
Jun Wu, Zhixiang Li, 2005 [19], for single-valued and multi-valued mappings on
S-metric and SH -metric spaces respectively. We showed that not every S-metric is
necessarily continuous.
The notion of compatible for single-valued and multi-valued mappings can be de-
fined to investigate the existence of fixed points in S-metric spaces. Also, the
existence of solution for certain nonlinear integral equations can be investigated in
a future work.
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