Common Fixed Points of Single-Valued and Multi-Valued Mappings in S-Metric Spaces

A. Pourgholam ${ }^{1}$, M. Sabbaghan ${ }^{2}$ and F. Taleghani ${ }^{3}$
${ }^{1,2,3}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, Lahijan, IRAN.
${ }^{1}$ pourgholam.akbar@yahoo.com, ${ }^{2}$ masoudsabbaghan@liau.ac.ir, E-mail address on sabbatical leave: masoudsabbaghan99@gmail.com, ${ }^{3}$ taleghani@liau.ac.ir

Abstract

In this paper, the notion of limit property (-Tayyab kamran, 2004-) and common limit property (-Yicheng Liu \& Jun Wu \& Zhixiang Li, 2005-) for singlevalued and multi-valued mappings on metric spaces are generalized to S-metric spaces. This idea is used to make some common fixed point theorems for singlevalued and multi-valued mappings by using a generalization of coincidence point in S-metric spaces. We give an example of an S-metric which is not continuous.

Key words and Phrases: Coincidence point, Common fixed point, Hausdorff Smetric, Limit property.

1. INTRODUCTION

Metric spaces are very important in mathematics. Generalized metric spaces can be pointed out as b-metric, D-metric and fuzzy metric spaces. For more considerations, see $[2,13,4,15]$. In 2012, another generalized metric space called S-metric space was introduced by Sedghi et al. [16]. In the setting of S-metric space see, for example $[5,9,12,14]$, and the references therein. For application of fixed points and common fixed points in different fields such as fractional calculus, existence theory in fractional boundary value problems, see $[1,3,6,7,8,11]$.
In this paper, some common fixed point theorems for single-valued and multivalued mappings are proved in S-metric spaces by using a generalization of coincidence point for pairs $(f, F),(f, F)$ and (g, G) in which the mappings f and g are single-valued and the mappings F and G are multi-valued mappings with values in S-metric space $\left(C B(X), S_{H}\right)$, where S_{H} is the Hausdorff S-metric.
In section 2, some preliminaries are recalled. In section 3, we state our main theorem. Section 4 is the conclusions.

[^0]
2. PRELIMINARIES

In this section some definitions, lemmas, theorems, and example are recalled.
Definition 2.1. [16] For nonempty set $X, S: X^{3} \longrightarrow[0, \infty)$ is called an S-metric on X if
(1): $S(x, y, z)=0$ iff $x=y=z$;
(2): $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$,
for all $x, y, z, a \in X .(X, S)$ is called an S-metric space.
Example 2.2. (1): Assume $\alpha \geq 0$ and $X=[\alpha, \infty)$. Define
$S: X^{3} \longrightarrow[0, \infty)$ by
$S(x, y, z)= \begin{cases}0 & \text { if } x=y=z ; \\ \max \{x, y, z\}-\alpha & \text { otherwise } .\end{cases}$
The mapping S is an S-metric on X. We call it the max S-metric.
(2): Let $X=[0, \infty)$. Define $S: X^{3} \longrightarrow[0, \infty)$ by

$$
S(x, y, z)= \begin{cases}0 & \text { if } x=y=z \\ x+y+2 z & \text { otherwise }\end{cases}
$$

Then, S is an S-metric on X.
Definition 2.3. [16] In S-metric space (X, S), assume that x is an
element of X, and $r>0$.
(1): An open ball $B_{s}(x, r)$ with center x and radius r is defined by $B_{s}(x, r)=$ $\{y \in X: S(y, y, x)<r\}$.
(2): A sequence $\left\{y_{n}\right\}$ in X converges to y if $\lim _{n \rightarrow \infty} S\left(y_{n}, y_{n}, y\right)=0$. In this case, we write $y_{n} \rightarrow y$ or $\lim _{n \rightarrow \infty} y_{n}=y$.
(3): A sequence $\left\{y_{n}\right\}$ in X is called a Cauchy sequence if $\lim _{n, m \rightarrow \infty} S\left(y_{n}, y_{n}, y_{m}\right)=0$.
(4): (X, S) is called complete if every Cauchy sequence converges.
(5): A subset A of X is called bounded if there exists $\epsilon>0$ such that for all $a, b \in A, S(a, a, b)<\epsilon$.
In (X, S), we set $\tau=\{A \subseteq X: A$ is a union of open balls $\} . \tau$ is a topology and we set $C B(X)=\{A \subseteq X: A$ is nonempty closed and bounded $\}$.

Example 2.4. Consider $X=[0, \infty)$ with the max S-metric. Then, for $a \in X$ and $r>0$, we have: $B_{s}(a, r)= \begin{cases}{[0, r)} & \text { if } a<r ; \\ \{a\} & \text { if } a \geq r .\end{cases}$

Definition 2.5. Let (X, S) be an S-metric space. We say S is continuous if $S\left(x_{n}, y_{n}, z_{n}\right) \rightarrow S(x, y, z)$, whenever $x_{n} \rightarrow x, y_{n} \rightarrow y, z_{n} \rightarrow z$.

Example 2.6. On $X=[0, \infty)$, define
$S(x, y, z)= \begin{cases}1 & \text { if }(x, y, z)=(1,2,3) ; \\ |x-z|+|y-z| & \text { otherwise } .\end{cases}$
S is a S-metric on X and it is not continuous. In fact, we have:

$$
x_{n}=1+\frac{1}{n} \rightarrow 1, y_{n}=2+\frac{2}{n} \rightarrow 2, z_{n}=3+\frac{3}{n} \rightarrow 3
$$

But

$$
3=\lim _{n \rightarrow \infty} S\left(x_{n}, y_{n}, z_{n}\right) \neq S(1,2,3)=1
$$

Definition 2.7. Let (X, S) be an S-metric space. We define $S_{H}: C B(X)^{3} \longrightarrow[0, \infty)$, by

$$
S_{H}(A, B, C)=H_{s}(A, C)+H_{s}(B, C)
$$

where $H_{s}(A, B)=\max \left\{h_{S}(A, B), h_{S}(B, A)\right\}$,
$h_{s}(A, B)=\sup \{S(a, a, B): a \in A\}$ and
$S(a, a, B)=\inf \{S(a, a, b): b \in B\}$.
For more information see [14].
Theorem 2.8. [14] S_{H} is an S-metric on $C B(X)$.
We call S_{H} the Hausdorff S-metric on $C B(X)$ generated by S.
Remark 2.9. In Example 2.2(1) let u be a nondecreasing continuous function on $X=[\alpha, \infty)$ and let $F(x)=[\alpha, u(x)]$. We have:

$$
H_{s}(F x, F y)= \begin{cases}u(y)-\alpha & \text { if } y \geq x \\ u(x)-\alpha & \text { if } x>y\end{cases}
$$

Let (X, S) be an S-metric space. The set of all nonempty compact subsets of X is denoted by $K(X)$.
Theorem 2.10. [14] Let (X, S) be a complete S-metric spaces.Then, $\left(K(X), S_{H}\right)$ is a complete S-metric space.

The converse is also true. In fact, suppose that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, S). By Theorem 3.4 [14], we have $\lim _{n \rightarrow \infty} S_{H}\left(\left\{x_{n}\right\},\left\{x_{n}\right\},\left\{x_{m}\right\}\right)=$ $2 \lim _{n \rightarrow \infty} S\left(x_{n}, x_{n}, x_{m}\right) \rightarrow 0$. That is, $\left\{\left\{x_{n}\right\}\right\}$ is a Cauchy sequence in $\left(K(X), S_{H}\right)$. So, by Lemma 3.9 [14], there exists $x \in X$ such that $\left\{x_{n}\right\} \rightarrow\{x\}$. That is, $x_{n} \rightarrow x$.
Definition 2.11. Let (X, S) be an S-metric space.
(1) The mappings $f: X \longrightarrow X$ and $F: X \longrightarrow C B(X)$ are given. We say f and F have a coincidence point at $a \in X$ if $f(a) \in F(a)$, also, we say f and F have a common fixed point at $a \in X$ if $f(a)=a \in F(a)$.
(2) The mapping $F: X \longrightarrow C B(X)$ is given. We say the mapping $f: X \longrightarrow X$ is F-weakly commuting at $x \in X$ if $f(f(x)) \in F(f(x))$.
Definition 2.12. Let (X, S) be an S-metric space. The mappings $f, g: X \longrightarrow X$ and $F, G: X \longrightarrow C B(X)$ are given.
(1) We say the pair (f, F) satisfies the limit property if there exist a sequence $\left\{x_{n}\right\}$ in X, some $t \in X$ and $A \in C B(X)$ such that $\lim _{n \rightarrow \infty} f x_{n}=t \in A=\lim _{n \rightarrow \infty} F x_{n}$ (see [10]).
(2) We say The pairs (f, F) and (g, G) satisfy the common limit property if there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $X, t \in X$, and $A, B \in C B(X)$ such that $\lim _{n \rightarrow \infty} F x_{n}=A, \lim _{n \rightarrow \infty} G y_{n}=B, \lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g y_{n}=t \in A \cap B$ (see [19]).

3. MAIN RESULT

In this section we state our mean theorem. Some examples and theorems follow up.

Theorem 3.1. Let f be a self-mapping on an S-metric space (X, S) and let F be a multi-valued mapping from X into $C B(X)$ such that
(1): The pair (f, F) satisfies the limit property;
(2): For all two distinct elements $x, y \in X$,

$$
\begin{gather*}
S_{H}(F x, F x, F y)<\max \{S(f x, f x, f y), S(f x, f x, F x)+S(f y, f y, F y), \\
S(f x, f x, F y)+S(f y, f y, F x)\} . \tag{1}
\end{gather*}
$$

If $f X$ is a closed subset of X, then
(a): f and F have a coincidence point.
(b): f and F have a common fixed point provided that for each $v \in C(f, F)$, the mapping f is F-weakly commuting at v and $f f v=f v$, where $C(f, F)=$ $\{a \in X: f a \in F a\}$.

Proof. By assumption, there exist a sequence $\left\{x_{n}\right\}$ in $X, t \in X$ and $A \in C B(X)$ such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=t \in \lim _{n \rightarrow \infty} F x_{n}=A$. Also there exists $a \in X$ such that $t=f(a)$. We put $x=x_{n}$ and $y=a$ in inequality (1) to obtain:

$$
\begin{gathered}
S_{H}\left(F x_{n}, F x_{n}, F a\right)<\max \left\{S\left(f x_{n}, f x_{n}, f a\right), S\left(f x_{n}, f x_{n}, F x_{n}\right)+S(f a, f a, F a),\right. \\
\left.S\left(f x_{n}, f x_{n}, F a\right)+S\left(f a, f a, F x_{n}\right)\right\} .
\end{gathered}
$$

By Lemma 3.3 [14], It follows that

$$
\lim _{n \rightarrow \infty} S_{H}\left(F x_{n}, F x_{n}, F a\right)=S_{H}(A, A, F a) \leqslant S(f a, f a, F a)
$$

By definition of S_{H} we have

$$
2 S(f a, f a, F a) \leqslant S_{H}(A, A, F a) \leqslant S(f a, f a, F a)
$$

That is, $S(f a, f a, F a)=0$. So, $f(a) \in F(a)$. This proves (a). To prove (b), by (a), there exist $t, a \in X$ such that $t=f a \in F a$. Since $a \in C(f, F)$, So $f f a=f a$ and $f f a \in F f a$. Hence, $f t=t \in F t$.

Example 3.2. Consider $X=[1, \infty)$ with the max S-metric. Define $f: X \longrightarrow X$, $F: X \longrightarrow C B(X)$ as $f(x)=x^{3}$ and $F(x)=\left[1, \frac{x^{2}+1}{2 x}\right]$ respectively. The pair (f, F) satisfies the limit property. In fact, we have

$$
\lim _{n \rightarrow \infty} f\left(1+\frac{1}{n}\right)=1 \in \lim _{n \rightarrow \infty} F\left(1+\frac{1}{n}\right)=\{1\} .
$$

For any two distinct elements $x, y \in X$, the inequality (1) holds. For example, in the case $x<y$, by Remark 2.9 we have

$$
S_{H}(F x, F x, F y)=2 H_{S}(F x, F y)=\frac{y^{2}+1}{y}-2
$$

On the other hand, $S(f x, f x, f y)=S\left(F x^{3}, F x^{3}, F y^{3}\right)=y^{3}-1$. So,

$$
\begin{gathered}
S_{H}(F x, F x, F y)<\max \{S(f x, f x, f y), S(f x, f x, F x)+S(f y, f y, F y), \\
S(f x, f x, F y)+S(f y, f y, F x)\} .
\end{gathered}
$$

Hence, by Theorem 3.1, f and F have a coincidence point. That is, $f(1) \in$ $F(1)$. Since $f f(1)=f(1)$ and $f f(1) \in F(1), f$ and F have common fixed point 1 . Theorem 3.3. Let f be a self-mapping on a complete S-metric space (X, S) and let F be a multi-valued mapping from X into $K(X)$ and let $\lambda \in\left(0, \frac{2}{3}\right)$ be a constant such that for all two distinct members $x, y \in X$:

$$
\begin{gather*}
S_{H}(F x, F x, F y) \leqslant \lambda \max \{S(f x, f x, f y), S(f x, f x, F x), S(f y, f y, F y), \\
S(f x, f x, F y)+S(f y, f y, F x)\} . \tag{2}
\end{gather*}
$$

If $f X$ is a closed subset of X and $F x \subseteq K(f X)$, then
(a): f and F have a coincidence point;
(b): f and F have a common fixed point provided that for each $v \in C(f, F)$, f is F-weakly commuting at v and $f f v=f v$, where $C(f, F)=\{a \in X$: $f a \in F a\}$.

Proof. Since for each $x_{0} \in X, \varnothing \neq F x_{0} \subseteq f X$, there exists $x_{1} \in X$ such that $y_{1}=f x_{1} \in F x_{0}$. So, by Lemma 3.11 [14], there exists $y_{2}=f x_{2} \in F x_{1}$ such that

$$
S\left(y_{1}, y_{1}, y_{2}\right)<\frac{1}{2} S_{H}\left(F x_{0}, F x_{0}, F x_{1}\right)+\lambda
$$

We obtain a sequence $\left\{y_{n}\right\}$ such that $y_{n}=f x_{n} \in F x_{n-1}$ and

$$
\begin{aligned}
& S\left(y_{n}, y_{n}, y_{n+1}\right)<\frac{1}{2} S_{H}\left(F x_{n-1}, F x_{n-1}, F x_{n}\right)+\lambda^{n} \\
& \leqslant \frac{\lambda}{2} \max \left\{S\left(f x_{n-1}, f x_{n-1}, f x_{n}\right), S\left(f x_{n-1}, f x_{n-1}, F x_{n-1}\right)\right. \\
& \left.S\left(f x_{n}, f x_{n}, F x_{n}\right), S\left(f x_{n-1}, f x_{n-1}, F x_{n}\right)+S\left(f x_{n}, f x_{n}, F x_{n-1}\right)\right\}+\lambda^{n} .
\end{aligned}
$$

Set $a_{n}=S\left(y_{n}, y_{n}, y_{n+1}\right)$. Since $f x_{n} \in F x_{n-1}, S\left(f x_{n}, f x_{n}, F x_{n-1}\right)=0$. So,

$$
\begin{gathered}
a_{n}<\frac{\lambda}{2} \max \left\{a_{n-1}, S\left(f x_{n-1}, f x_{n-1}, F x_{n-1}\right), S\left(f x_{n}, f x_{n}, F x_{n}\right)\right. \\
\left.S\left(f x_{n-1}, f x_{n-1}, F x_{n}\right)\right\}+\lambda^{n}
\end{gathered}
$$

We know
$S\left(f x_{n-1}, f x_{n-1}, F x_{n-1}\right) \leqslant S\left(f x_{n-1}, f x_{n-1}, f x_{n}\right)=a_{n-1}, S\left(f x_{n}, f x_{n}, F x_{n}\right) \leqslant a_{n}$, $S\left(f x_{n-1}, f x_{n-1}, F x_{n}\right) \leqslant S\left(y_{n-1}, y_{n-1}, y_{n+1}\right) \leqslant 2 S\left(y_{n-1}, y_{n-1}, y_{n}\right)$
$+S\left(y_{n+1}, y_{n+1}, y_{n}\right)=2 a_{n-1}+a_{n}$.
So, $a_{n}<\frac{\lambda}{2}\left(2 a_{n-1}+a_{n}\right)+\lambda^{n}$. That is, $a_{n}<\frac{\lambda}{1-\frac{\lambda}{2}} a_{n-1}+\frac{\lambda^{n}}{1-\frac{\lambda}{2}}$. By induction, we have

$$
\begin{aligned}
a_{n} & <\left(\frac{\lambda}{1-\frac{\lambda}{2}}\right)^{n}\left[a_{0}+1+\left(1-\frac{\lambda}{2}\right)+\left(1-\frac{\lambda}{2}\right)^{2}+\cdots+\left(1-\frac{\lambda}{2}\right)^{n-1}\right] \\
& \leqslant\left(\frac{\lambda}{1-\frac{\lambda}{2}}\right)^{n}\left[a_{0}+1+(n-1)\left(1-\frac{\lambda}{2}\right)\right] . \\
\text { Set } b_{n} & =\left(\frac{\lambda}{1-\frac{\lambda}{2}}\right)^{n}\left[a_{0}+1+(n-1)\left(1-\frac{\lambda}{2}\right)\right] .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}=\frac{\lambda}{1-\frac{\lambda}{2}}<1$, so, $\lim _{n \rightarrow \infty} a_{n}=0$.
Now, we show that $\left\{y_{n}\right\}$ is a Cauchy sequence.
For all $m, n \in N, m \geqslant n$, by Lemma 3.1 [18]
$S\left(y_{n}, y_{n}, y_{m}\right) \leq 2 \sum_{i=n}^{m-2} a_{i}+a_{m-1}$
$\leq 2 \sum_{i=n}^{\infty}\left(\frac{2 \lambda}{2-\lambda}\right)^{i}\left[a_{0}+1+(i-1)\left(1-\frac{\lambda}{2}\right)\right]+\left(\frac{2 \lambda}{2-\lambda}\right)^{m-1}\left[a_{0}+1+(m-2)\left(1-\frac{\lambda}{2}\right)\right]$.
Therefore, $\lim _{n, m \rightarrow \infty} S\left(y_{n}, y_{n}, y_{m}\right)=0$. So, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} y_{n}=u$. Since $f X$ is closed, there exists $a \in X$ such that $f a=u$. By putting $x=x_{n}, y=x_{m}$ in (2):

$$
\begin{align*}
& S_{H}\left(F x_{n}, F x_{n}, F x_{m}\right) \leqslant \lambda \max \left\{S\left(f x_{n}, f x_{n}, f x_{m}\right), S\left(f x_{n}, f x_{n}, F x_{n}\right),\right. \\
& \left.S\left(f x_{m}, f x_{m}, F x_{m}\right), S\left(f x_{n}, f x_{n}, F x_{m}\right)+S\left(f x_{m}, f x_{m}, F x_{n}\right)\right\} \tag{3}
\end{align*}
$$

Also:

$$
\begin{align*}
S\left(f x_{n}, f x_{n}, F x_{n}\right) & \leqslant S\left(y_{n}, y_{n}, y_{n+1}\right) \tag{4}\\
S\left(f x_{m}, f x_{m}, F x_{m}\right) & \leqslant S\left(y_{m}, y_{m}, y_{m+1}\right) \tag{5}\\
S\left(f x_{n}, f x_{n}, F x_{m}\right) & \leqslant S\left(y_{n}, y_{n}, y_{m+1}\right) \tag{6}\\
S\left(f x_{m}, f x_{m}, F x_{n}\right) & \leqslant S\left(y_{m}, y_{m}, y_{n+1}\right) \tag{7}
\end{align*}
$$

Relations $(4-7)$ imply $\lim _{m, n \rightarrow \infty} S_{H}\left(F x_{n}, F x_{n}, F x_{m}\right)=0$.
So, $\left\{F x_{n}\right\}$ is a Cauchy sequence. Hence, by Theorem 2.10 there exists $A \in K(X)$ such that $\lim _{n \rightarrow \infty} F x_{n}=A$. Since $S\left(y_{n}, y_{n}, A\right) \leqslant \frac{1}{2} S_{H}\left(F x_{n-1}, F x_{n-1}, A\right)$. So, $\lim _{n \rightarrow \infty} S\left(y_{n}, y_{n}, A\right)=0$. By Lemma 3.4 [14], for every n, there exists $\alpha_{n} \in A$ such that $S\left(y_{n}, y_{n}, A\right)=S\left(y_{n}, y_{n}, \alpha_{n}\right)$. Hence, $\lim _{n \rightarrow \infty} S\left(y_{n}, y_{n}, \alpha_{n}\right)=0$. Lemma 2.1 [17], implies $\lim _{n \rightarrow \infty} \alpha_{n}=u \in A$. So (f, F) satisfies the limit property. The rest of the proof is similar to Theorem 3.1.

Example 3.4. Consider $X=[0,1]$ with the max S-metric. For $f x=x^{3}$ and $F x=\left[0, \frac{x^{3}}{8}\right]$, the inequality (2) holds for all two distinct members $x, y \in X$. For example, in case $x<y$, by Remark 2.9, $H_{S}(F x, F y)=\frac{y^{3}}{8}$. Hence

$$
\begin{aligned}
S_{H}(F x, F x, F y)= & 2 H_{S}(F x, F y)=\frac{y^{3}}{4}=\frac{1}{4} S(f x, f x, f y) \leqslant \frac{1}{4} \max \{S(f x, f x, f y), \\
& S(f x, f x, F x), S(f y, f y, F y), S(f x, f x, F y)+S(f y, f y, F x)\}
\end{aligned}
$$

We have $f X=X$ and $F X \subseteq K(f X)$. So all conditions of Theorem 3.3 are satisfied. Hence, f and F have commn fixed point 0.
Theorem 3.5. Let f, g be two self-mappings on an S-metric (X, S) and let F, G be two multi-valued mappings from X into $C B(X)$ such that
(1): The pairs (f, F) and (g, G) satisfy the common limit property;
(2): For all two distinct members $x, y \in X$:

$$
\begin{align*}
S_{H}(F x, F x, G y)<\max \{ & S(f x, f x, g y), S(f x, f x, F x)+S(g y, g y, G y), \\
& S(f x, f x, G y)+S(g y, g y, F x)\} . \tag{8}
\end{align*}
$$

If $f X, g X$ are closed subsets of X, then
(a): f and F have coincidence point;
(b): g and G have coincidence point;
(c): f and F have common fixed point provided that for each $v \in C(f, F), f$ be an F-weakly commuting at v and $f f v=f v$;
(d): g and G have common fixed point provided that for each $v \in C(g, G), g$ be a G-weakly commuting at v and $g g v=g v$;
(e): If (c) and (d) hold, then f, g, F and G have common fixed point.

Proof. By assumption, there exist sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in X and $u \in X, A, B \in$ $C B(X)$ such that $\lim _{n \rightarrow \infty} F x_{n}=A, \lim _{n \rightarrow \infty} G y_{n}=B$ and $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g y_{n}=$
$u \in A \cap B$. Assume that $v, w \in X$ such that $\lim _{n \rightarrow \infty} f x_{n}=f v$ and $\lim _{n \rightarrow \infty} g y_{n}=$ $g w$. We have $f v=g w=u \in A \cap B$. To prove (a), we show, $u=f v \in F v$. Put $x=v$ and $y=y_{n}$ in (8) and approach n to ∞, then $S_{H}(F v, F v, B) \leqslant S(f v, f v, F v)$. Since

$$
u=f v \in B, 2 S(f v, f v, F v) \leqslant S_{H}(F v, F v, B)
$$

so, $S(f v, f v, F v)=0$. Therefore, $u=f v \in F v$. Similarly, put $x=x_{n}, y=w$ in (8) and we have $u=g w \in G w$. Properties (c), (d), (e) are similar to Theorem 3.1(b).

Example 3.6. Consider $X=[0, \infty)$ with the max S-metric. For $f x=x^{3}, F x=$ $\left[0, \frac{x^{3}}{8}\right]$ and $g x=x^{4}, G x=\left[0, \frac{x^{4}}{8}\right]$, the pairs (f, F) and (g, G) satisfy the common limit property, in fact

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} g\left(\frac{1}{n}\right)=0, \lim _{n \rightarrow \infty} F\left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} G\left(\frac{1}{n}\right)=\{0\}
$$

For all distinct members $x, y \in X$, the inquality (8) holds.
For example, in case $x<y$, first assume $x^{3}<y^{4}$. Since, for $t \in F x, S(t, t, G y)=0$, so, $h_{S}(F x, G y)=0$. Also since, for $t \in G y$, we have

$$
S(t, t, F x)= \begin{cases}0 & \text { if } t \in F x \\ t & \text { if } t \in G y-F x\end{cases}
$$

so, $h_{S}(G y, F x)=\sup \{S(t, t, F x): t \in G y\}=\frac{y^{4}}{8}$.
Hence, $H_{S}(F x, G y)=\frac{y^{4}}{8}$ and $S_{H}(F x, F x, G y)=\frac{y^{4}}{4}$.
On the other hand, we have $S(f x, f x, g y)=y^{4}$, therefore the inequality (8) holds. Now, assume $y^{4}<x^{3}$. It can be shown that $S_{H}(F x, F x, G y)=\frac{x^{3}}{4}$.
On the other hand, we have $S(f x, f x, g y)=x^{3}$, so the inequality (8) holds. We have $f f 0=f 0=0 \in F f 0$, and $g g 0=g 0=0 \in G g 0$. So, all conditions of Theorem 3.5 are satisfied. Therefore, f, g, F and G have common fixed point. That $i s, f 0=g 0=0 \in F 0 \cap G 0=\{0\}$.
Corollary 3.7. If in Theorem 3.5 we set $F=G$, and $f=g$, Theorem 3.1 follows.
Theorem 3.8. Let f, g be two self-mappings on a complete S-metric space (X, S) and let F, G be two multi-valued mappings from X into $K(X)$ and let $\lambda \in\left(0, \frac{2}{3}\right)$ be a constant such that for all two distinct members $x, y \in X$:

$$
\begin{align*}
S_{H}(F x, F x, G y) \leqslant \lambda \max \{ & S(f x, f x, g y), S(f x, f x, F x), S(g y, g y, G y) \\
& S(f x, f x, G y)+S(g y, g y, F x)\} \tag{9}
\end{align*}
$$

If $f X, g X$ are closed subsets of X and $F X \subseteq K(g X), G X \subseteq K(f X)$, then
(a): f and F have coincidence point;
(b): g and G have coincidence point;
(c): f and F have common fixed point provided that for each $v \in C(f, F), f$ be an F-weakly commuting mapping at v and $f f v=f v$;
(d): g and G have common fixed point provided that for each $v \in C(g, G), g$ is an G-weakly commuting mapping at v and $g g v=g v$;
(e): If (c) and (d) hold, then f, g, F and G have common fixed point.

Proof. For $x_{0} \in X$, there exists $x_{1} \in X$ such that $y_{1}=g x_{1} \in F x_{0}$. So, by Lemma 3.11 [14], there exists $y_{2} \in G x_{1}$ such that

$$
S\left(y_{1}, y_{1}, y_{2}\right)<\frac{1}{2} S_{H}\left(F x_{0}, F x_{0}, G x_{1}\right)+\lambda
$$

There exists $x_{2} \in X$ such that $y_{2}=f x_{2} \in G x_{1}$. So, there exists $y_{3} \in F x_{2}$ such that

$$
S\left(y_{2}, y_{2}, y_{3}\right)<\frac{1}{2} S_{H}\left(G x_{1}, G x_{1}, F x_{2}\right)+\lambda^{2}
$$

We obtain a sequence $\left\{y_{n}\right\}$ such that for every $n \geqslant 1$,

$$
y_{2 n}=f x_{2 n} \in G x_{2 n-1}, y_{2 n+1}=g x_{2 n+1} \in F x_{2 n}
$$

We have

$$
\begin{aligned}
S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right) & <\frac{1}{2} S_{H}\left(G x_{2 n-1}, G x_{2 n-1}, F x_{2 n}\right)+\lambda^{2 n} \\
S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right) & <\frac{1}{2} S_{H}\left(F x_{2 n-2}, F x_{2 n-2}, G x_{2 n-1}\right)+\lambda^{2 n-1} .
\end{aligned}
$$

Set $a_{n}=S\left(y_{n}, y_{n}, y_{n+1}\right)$. Similar to Theorem 3.3, it can be shown that
$a_{2 n}<\frac{\lambda}{2}\left(2 a_{2 n-1}+a_{2 n}\right)+\lambda^{2 n}, a_{2 n-1}<\frac{\lambda}{2}\left(2 a_{2 n-2}+a_{2 n-1}\right)+\lambda^{2 n-1}$.
So, for every $n \in N$, we have
$a_{n}<\frac{\lambda}{2}\left(2 a_{n-1}+a_{n}\right)+\lambda^{n}$. Similar to Theorem 3.3, we have $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left\{y_{n}\right\}$ is a Cauchy sequence. So, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} y_{n}=u$. Hence, $\lim _{n \rightarrow \infty} f x_{2 n}=\lim _{n \rightarrow \infty} g x_{2 n+1}=u$, and there exist $a, b \in X$ such that $f a=g b=u$. To show $\left\{F x_{2 n}\right\}$ is a Cauchy sequence, we have

$$
\begin{align*}
S_{H}\left(F x_{2 n}, F x_{2 n}, F x_{2 m}\right) \leqslant & 2 S_{H}\left(F x_{2 n}, F x_{2 n}, G x_{2 n+1}\right) \\
& +S_{H}\left(F x_{2 m}, F x_{2 m}, G x_{2 n+1}\right) . \tag{10}
\end{align*}
$$

By (9) we have:

$$
\begin{aligned}
& S_{H}\left(F x_{2 n}, F x_{2 n}, G x_{2 n+1}\right) \leqslant \lambda \max \left\{S\left(f x_{2 n}, f x_{2 n}, g x_{2 n+1}\right), S\left(f x_{2 n}, f x_{2 n}, F x_{2 n}\right),\right. \\
& \left.S\left(g x_{2 n+1}, g x_{2 n+1}, G x_{2 n+1}\right), S\left(f x_{2 n}, f x_{2 n}, G x_{2 n+1}\right)+S\left(g x_{2 n+1}, g x_{2 n+1}, F x_{2 n}\right)\right\} .
\end{aligned}
$$

So, $\lim _{n \rightarrow \infty} S_{H}\left(F x_{2 n}, F x_{2 n}, G x_{2 n+1}\right)=0$.
Similarly, we have $\lim _{n \rightarrow \infty} S_{H}\left(F x_{2 m}, F x_{2 m}, G x_{2 n+1}\right)=0$. It follows from (10) that $\lim _{n, m \rightarrow \infty} S_{H}\left(F x_{2 n}, F x_{2 n}, F x_{2 m}\right)=0$. So, by Theorem 2.10, there exists $A \in$ $K(X)$ such that $\lim _{n \rightarrow \infty} F x_{2 n}=A$. Now, assume that the left side of inequality (9) is $S(f x, f x, g y)$. Then, we have

$$
\begin{equation*}
S_{H}(F x, F x, G y) \leqslant \lambda S(f x, f x, g y) \tag{11}
\end{equation*}
$$

Put $x=x_{2 n}, y=x_{2 n+1}$ in (11) to obtain

$$
S_{H}\left(F x_{2 n}, F x_{2 n}, G x_{2 n+1}\right) \leqslant \lambda S\left(f x_{2 n}, f x_{2 n}, g x_{2 n+1}\right)
$$

So,

$$
\lim _{n \rightarrow \infty} S_{H}\left(F x_{2 n}, F x_{2 n}, G x_{2 n+1}\right)=0
$$

Since $\lim _{n \rightarrow \infty} F x_{2 n}=A$, by Lemma 2.1 [17], $\lim _{n \rightarrow \infty} G x_{2 n+1}=A$. Assume that the left side of inequality (9) is $S(f x, f x, G y)+S(g y, g y, F x)$. Then, we have

$$
\begin{equation*}
S_{H}(F x, F x, G y) \leqslant \lambda[S(f x, f x, G y)+S(g y, g y, F x)] \tag{12}
\end{equation*}
$$

Put $x=x_{2 n}, y=x_{2 n+1}$ in (12) to obtain

$$
\begin{aligned}
S_{H}\left(F x_{2 n}, F x_{2 n}, G x_{2 n+1}\right) & \leqslant \lambda\left[S\left(y_{2 n}, y_{2 n}, G x_{2 n+1}\right)+S\left(y_{2 n+1}, y_{2 n+1}, F x_{2 n}\right)\right] \\
& \leqslant \lambda\left[S\left(y_{2 n}, y_{2 n}, y_{2 n+2}\right)+S\left(y_{2 n+1}, y_{2 n+1}, y_{2 n+1}\right)\right] .
\end{aligned}
$$

So,

$$
\lim _{n \rightarrow \infty} S_{H}\left(F x_{2 n}, F x_{2 n}, G x_{2 n+1}\right)=0
$$

Therefore, by Lemma 2.1 [17], $\lim _{n \rightarrow \infty} G x_{2 n+1}=A$. Similarly, if the left side of inequality (9) is $S(f x, f x, F x)$ or $S(g y, g y, G y)$, we have $\lim _{n \rightarrow \infty} G x_{2 n+1}=A$. On the other hand, we have:

$$
S\left(y_{2 n+1}, y_{2 n+1}, A\right) \leqslant \frac{1}{2} S_{H}\left(F x_{2 n}, F x_{2 n}, A\right)
$$

So, $\lim _{n \rightarrow \infty} S\left(y_{2 n+1}, y_{2 n+1}, A\right)=0$. By Lemma 3.4 [14], for every n, there exists $\alpha_{2 n+1} \in A$ such that,

$$
S\left(y_{2 n+1}, y_{2 n+1}, A\right)=S\left(y_{2 n+1}, y_{2 n+1}, \alpha_{2 n+1}\right)
$$

So, $\lim _{n \rightarrow \infty} S\left(y_{2 n+1}, y_{2 n+1}, \alpha_{2 n+1}\right)=0$. Hence, by Lemma 2.1 [17], $\lim _{n \rightarrow \infty} \alpha_{2 n+1}=$ u. So $u \in A$. That is, $(f, F),(g, G)$ satisfy the common limit property. The rest of the proof is similar to Theorem 3.5.

Example 3.9. In Example 3.6, for all distinct members $x, y \in X$:

$$
\begin{aligned}
S_{H}(F x, F x, G y)= & \frac{1}{4} S(f x, f x, g y) \\
\leqslant & \frac{1}{4} \max \{S(f x, f x, g y), S(f x, f x, F x), S(g y, g y, G y) \\
& S(f x, f x, G y)+S(g y, g y, F x)\}
\end{aligned}
$$

So, all conditions of Theorem 3.8 are satisfied. That is, f, g, F and G have common fixed point.

Corollary 3.10. If in Theorem 3.8 we set $F=G$, and $f=g$, Theorem 3.3 follows.

4. CONCLUSIONS

We generalized some theorems in fixed point theorem work. Theorem 3.1 is a generalization of Theorem 3.4 of Tayyab Kamran, 2004 [10]. Theorem 3.5 and Theorem 3.8 are generalizations of Theorem 2.3 and Theorem 2.8 of Yicheng Liu, Jun Wu, Zhixiang Li, 2005 [19], for single-valued and multi-valued mappings on S-metric and S_{H}-metric spaces respectively. We showed that not every S-metric is necessarily continuous.
The notion of compatible for single-valued and multi-valued mappings can be defined to investigate the existence of fixed points in S-metric spaces. Also, the existence of solution for certain nonlinear integral equations can be investigated in a future work.

Acknowledgement

The authors would like to express their appreciation to the referee for his/ her valuable comments and suggestions that improved the original version.

REFERENCES

[1] Afshari, H., Jarad, F., and Abdeljawad, T., "On a new fixed point theorem with on application on a coupled system of fractional di erential equations", Adv. Differ. Equ.2020, Article No. 461 (2020), 1-13, https://doi.org/10.1186/s13662-020-02926-0.
[2] Bakhtin, I.A., "The contraction mapping principal in almost metric spaces", Funct. Anal., 30 (1989), 26-37.
[3] Baleanu, D., Etemad, S., and Rezapour, S., "On a fractional hybrid multi-term integrodifferential inclusion with four-point sum and integral boundary conditions", Adv. Differ. Equ. 2020, Article No. 25 (2020), 1-20, https://doi.org/10.1186/s13662-020-02713-x.
[4] Dhage, B.C., "Generalized metric spaces mappings with fixed point", Bull. Cal. Math. Soc., 84 (1992), 329-336.
[5] Dung, N.V., and Hieu, S. Radojevic, N.T., "Fixed point theorems for g-monotone maps on partially ordered S-metric spaces", Filomat, (2014), 1885-1898.
[6] Etemad, S., Hussain, A., Imran, A., Alzabut, J., Rezapour, S., and George, A., "On a fractional cantilever beam model in the q-difference inclusion settings via special multi-valued operators", J Inequal Appl 2021, Article No. 174 (2021), 1-20, https://doi.org/10.1186/s13660-021-02708-6.
[7] S. Etemad, Rezapour, S., and Samei, M.E., " $\alpha-\psi$-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results", Adv. Differ. Equ. 2020, Article No. 218 (2020), 1-40, https://doi.org/10.1186/s13662-020-02679-w.
[8] Etemad, S., Souid, M.S., Telli, B., Kaabar, M.K.A., and Rezapour, S., "Investigation of the neutral fractional differential inclusions of Katugampola-type involving both retarded and advanced arguments via Kuratowski MNC technique", Adv. Differ. Equ. 2021, Article No. 214 (2021), 1-20, https://doi.org/10.1186/s13662-021-03377-x.
[9] Gupta, V., Deep, R., "Some coupled fixed point theorems in partially ordered S-metric spaces", Miskols mathematical notes, 16:1 (2015), 181-194.
[10] Kamran, T., "Coincidence and fixed points for hybrid strict contractions", J. Math. Anal. Appl., 2991 (2004), 235-241.
[11] Mohammadi, H., Rezapour, S., Etemad, S., and Baleanu, D., "Two sequential fractional hybrid differential inclusions", Adv. Differ. Equ. 2020, Article No. 385 (2020), 1-24, https://doi.org/10.1186/s13662-020-02850-3.
[12] Mojaradiafra, J., and Sabbaghan, M., "Some new applications of S-metric spaces by weakly compatible pairs with limit property", J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math, 28:1, (2021), 1-13.
[13] Nyein, E.E., and Zaw, A.K., "Quasi (s, r)-contractive multi-valued operators on b-metric space and related fixed point theorems", J. Indones. Math. Soc., 26:3, (2020), 393-402.
[14] Pourgholam, A., and Sabbaghan, M., " S_{H}-metric spaces and fixed point theorems for multivalued weak contraction mappings", Mathematical science, 15:4, (2021), 377-385.
[15] Sedghi, S., and Shobe, N., "Fixed point theorem in M-fuzzy metric spaces with property (E)", Adv in fuzzy Math, 1:1, (2006), 55-65.
[16] Sedghi, S., Shobe, N., and Aliouche, A., "A generalization of fixed point theorems in S-metric spaces", Mat.Vesn, 64:3, (2012), 258-266.
[17] Sedghi, S., Shobkolaei, N., Shahraki, M., and Dosenovic, T., "Common fixed point of four maps in S-metric spaces", Mathematical Sciences, (2018), 137-143.
[18] Shrivastava, S., Daheriya, R., and Ughade, M., " S-metric space, expanding mappings \& fixed point theorems", International journal of scientific and innovative mathematical research, (2006), 1-12.
[19] Yicheng, L., Jun, W., and Zhixiang, L., "Common fixed points of single-valued and multivalued maps", International Journal of mathematics and mathematical sciences, (2005), 3045-3055.

[^0]: 2010 Mathematics Subject Classification: 47H10, 54 H25
 Received: 26-11-2021, accepted: 08-03-2022.

