K-CONTINUOUS FUNCTIONS AND RIGHT B_1 COMPOSITORS

JONALD P. FENECIOS¹ AND EMMANUEL A. CABRAL²

¹Department of Mathematics, Ateneo de Davao University E. Jacinto St., Davao City, Philippines, jonald_fenecios@yahoo.com ²Department of Mathematics, Ateneo de Manila University Loyola Heights, Quezon City, Philippines, cabral@math.admu.edu.ph

Abstract. A function $g : \mathbb{R} \to \mathbb{R}$ from the real line to itself is called a right B_1 compositor if for any Baire class one function $f : \mathbb{R} \to \mathbb{R}$, $f \circ g : \mathbb{R} \to \mathbb{R}$ is Baire class one. In this study, we first apply Jayne-Rogers Theorem [2] to prove that every right B_1 compositor is \mathcal{D} -continuous where \mathcal{D} is the class of all positive functions on \mathbb{R} and thus give a positive answer to a problem posed by D. Zhao. This result then characterizes the right B_1 compositor as a class of naturally defined functions. Furthermore, we also improved some of the results in [4]. Lastly, a counterexample was constructed to a claim in [4] that every function with a finite number of discontinuity points is left B_1 compositor.

Key words: Baire class one, right B_1 compositor, \mathcal{D} -continuous, k-continuous.

Abstrak. Sebuah fungsi $g : \mathbb{R} \to \mathbb{R}$ dari bilangan riil ke bilangan riil disebut kompositor B_1 kanan jika untuk setiap fungsi Baire kelas satu $f : \mathbb{R} \to \mathbb{R}$, $f \circ g : \mathbb{R} \to \mathbb{R}$ adalah Baire kelas satu. Pada artikel ini, pertama-tama kami menerapkan Teorema Jayne-Rogers [2] untuk membuktikan bahwa setiap kompositor B_1 kanan adalah kontinu- \mathcal{D} dengan \mathcal{D} adalah kelas dari semua fungsi positif pada \mathbb{R} sehingga memberikan jawaban positif untuk sebuah masalah yang diajukan oleh D. Zhao. Hasil ini kemudian mengkarakterisasi kompositor B_1 kanan sebagai sebuah kelas dari fungsi yang terdefinisi secara alami. Lebih jauh, kami juga memperbaiki beberapa hasil di [4]. Terakhir, sebuah contoh penyangkal dikonstruksi untuk sebuah klaim di [4] yaitu setiap fungsi kontinu dengan sejumlah hingga titik-titik diskontinu adalah kompositor B_1 kiri.

Kata kunci: Baire kelas satu, kompositor B_1 kanan, kontinu- \mathcal{D} , kontinu-k.

²⁰⁰⁰ Mathematics Subject Classification: 26A21, 26A15.

Received: 10-10-2011, revised: 06-05-2012, accepted: 07-05-2012.

³⁷

1. Introduction

A function $g : \mathbb{R} \to \mathbb{R}$ is said to be a right B_1 compositor if $f \circ g$ is Baire class one whenever f is Baire class one while a function $f : \mathbb{R} \to \mathbb{R}$ is \mathcal{D} -continuous if for every positive function $\epsilon(\cdot) \in \mathcal{D}$ there exists a function $\delta : \mathbb{R} \to \mathbb{R}^+$ such that for any $x, y \in \mathbb{R}$

$$|x - y| < \delta(x) \land \delta(y) \Longrightarrow |f(x) - f(y)| < \epsilon(f(x)) \land \epsilon(f(y)),$$

where \mathcal{D} is a class of positive functions on \mathbb{R} . It turned out that right B_1 compositors have a similar characterization as that of the characterization of Baire class one functions discovered by P.Y. Lee, W.K. Tang and D. Zhao recently[1].

Furthermore, Zhao [4] studied a subclass of right B_1 compositors by considering \mathcal{D} to be the class of all positive real valued functions defined on \mathbb{R} and called them k-continuous. He asked whether every right B_1 compositor is k-continuous. We answered this query in the affirmative. In the last part of the paper, we also provide a counterexample to the claim in [4, page 550] that every function with a finite number of discontinuity points is left B_1 compositor.

2. Equivalence of Right B_1 Compositors and k-Continuous Functions

We shall denote min $\{a, b\}$ by $a \wedge b$ for any two real numbers a and b. The following two definitions are given in [4].

Definition 2.1. A function $g : \mathbb{R} \to \mathbb{R}$ is called a right B_1 compositor if $f \circ g$ is Baire class one whenever $f : \mathbb{R} \to \mathbb{R}$ is Baire class one. Left B_1 compositor is defined similarly.

Definition 2.2. Let A be a subset of \mathbb{R} . A function $f : A \to \mathbb{R}$ is \mathcal{D} -continuous if for any $\epsilon(\cdot) \in \mathcal{D}$ there is a positive real valued function $\delta : A \to \mathbb{R}^+$ such that for any $x, y \in A$

$$|x - y| < \delta(x) \land \delta(y) \Longrightarrow |f(x) - f(y)| < \epsilon(f(x)) \land \epsilon(f(y)).$$

A function $f : \mathbb{R} \to \mathbb{R}$ is k-continuous if f is \mathcal{D} -continuous where \mathcal{D} is the class of all positive real valued functions on \mathbb{R} .

It is an easy exercise to prove that every continuous function is k-continuous.

Proposition 2.3. Let \mathcal{D} be a class of positive real valued functions on \mathbb{R} and $g: \mathbb{R} \to \mathbb{R}$. Suppose that $\mathbb{R} = \bigcup_{i=1}^{+\infty} F_i$ where each F_i is an F_{σ} set and that $g|_{F_i}$ is \mathcal{D} -continuous for each i. Then $g: \mathbb{R} \to \mathbb{R}$ is \mathcal{D} -continuous.

Proof: By Lemma 1 of [4], we may assume that the countable collection of F_{σ} sets $\{F_i\}_{i=1}^{+\infty}$ are pairwise disjoint. By [4, Lemma 2], there is a positive function $\delta_0(\cdot)$ on \mathbb{R} such that if $x \in F_n$ and $y \in F_m$, $m \neq n$ then

$$|x-y| \ge \delta_0(x) \wedge \delta_0(y).$$

Let $\epsilon(\cdot)$ be any positive real valued function on \mathbb{R} that belongs to \mathcal{D} . Since $g|_{F_i}$ is \mathcal{D} -continuous for each *i* then for every *i* there is a positive function $\delta_i(\cdot)$ on F_i such that for x, y in F_i

$$|x - y| < \delta_i(x) \land \delta_i(y) \Longrightarrow |g(x) - g(y)| < \epsilon(g(x)) \land \epsilon(g(y)).$$

Put

$$\delta(x) = \delta_0(x) \wedge \delta_i(x), \quad x \in F_i$$

Suppose $|x - y| < \delta(x) \land \delta(y)$. Then there is some *n* such that $x, y \in F_n$. Since $g|_{F_n}$ is \mathcal{D} -continuous then $|g(x) - g(y)| < \epsilon(g(x)) \land \epsilon(g(y))$. Therefore, *g* is \mathcal{D} -continuous on \mathbb{R} .

Corollary 2.4. Suppose that $\mathbb{R} = \bigcup_{i=1}^{+\infty} F_i$ where each F_i is an F_{σ} set and that $g|_{F_i}$ is continuous. Then $g : \mathbb{R} \to \mathbb{R}$ is k-continuous.

A function $f: X \to Y$ from a metric space X into a metric space Y is said to be a Δ_2^0 -function if $f^{-1}(S)$ is F_{σ} in X for every F_{σ} set S in Y. Furthermore, $f: X \to Y$ is said to be piecewise continuous if X can be expressed as the union of an increasing sequence X_0, X_1, \ldots of closed sets in X such that $f|_{X_n}$ is continuous for every $n \in \mathbb{N}$. Theorem 2.5 [2, Theorem 2.1] is used in the proof of Theorem 2.6. Here we use the fact that \mathbb{R} is a complete metric space with the usual metric in \mathbb{R} .

Theorem 2.5. ([2]) Let X and Y be metric spaces such that the metric of X is complete, and let $f : X \to Y$ be of Baire class 1. If f is a Δ_2^0 -function then it is piecewise continuous.

The following is the main result of the paper which gives a positive answer to the question posed in [4].

Theorem 2.6. A function $f : \mathbb{R} \to \mathbb{R}$ is a right B_1 compositor if and only if f is k-continuous.

Proof: The sufficiency has been proved in [4]. Now we prove the necessity. Assume that f is a right B_1 compositor. Then by [4, Theorem 1], $f^{-1}(F)$ is F_{σ} for every F_{σ} set F in \mathbb{R} . By Theorem 2.5, there exists an increasing sequence of closed sets $\{E_i\}_{i=1}^{\infty}$ such that $\mathbb{R} = \bigcup_{i=1}^{\infty} E_i$ and $f|_{E_i}$ is continuous for each i. We apply Corollary 2.4 to conclude the proof.

By combining [4, Theorem 1] and the above theorem we have the following:

Theorem 2.7. Let $f : \mathbb{R} \to \mathbb{R}$ be a function from the real line to itself. Then the following statements are equivalent:

(1) For every closed set $A \subseteq \mathbb{R}$, $f^{-1}(A)$ is F_{σ} .

(2) For every F_{σ} set $A \subseteq \mathbb{R}$, $f^{-1}(A)$ is F_{σ} .

(3) For every positive Baire class one function $\epsilon(\cdot)$ on \mathbb{R} there is a positive function $\delta : \mathbb{R} \to \mathbb{R}^+$ such that for any x, y in \mathbb{R}

$$|x - y| < \delta(x) \land \delta(y) \Longrightarrow |f(x) - f(y)| < \epsilon(f(x)) \land \epsilon(f(y)).$$

(4) For every positive function $\epsilon(\cdot)$ on \mathbb{R} there is a positive function $\delta: \mathbb{R} \to \mathbb{R}^+$ such that for any x, y in \mathbb{R}

$$|x-y| < \delta(x) \land \delta(y) \Longrightarrow |f(x) - f(y)| < \epsilon(f(x)) \land \epsilon(f(y)).$$

(5) f is a right B_1 compositor.

3. Further Results on k-Continuous Functions

In [4] the following were stated without proof:

(1) If the range $q(\mathbb{R})$ is a finite set then g is k-continuous if and only if it is Baire class one.

(2) If f and q have different values at only a finite number of points then f is k-continuous if and only if q is k-continuous.

(3) If the set of discontinuity of f is discrete then f is k-continuous.

We sharpen the first two observations by considering a discrete set instead of a finite set. It is shown here that a discrete set cannot be replaced by a countable set. In this sense the improvement is optimal. We use the improvement of (1) to give a characterization of Baire class one functions in terms of k-continuous functions. We also include a proof of (3) and give some remarks on it.

Note that $f : \mathbb{R} \to \mathbb{R}$ is Baire class one if $f^{-1}(a, b)$ is F_{σ} for any a < b.

Theorem 3.1. If the range $g(\mathbb{R})$ is a discrete set then g is k-continuous if and only if it is Baire class one.

Proof: Suppose $g(\mathbb{R})$ is discrete. We only need to verify the sufficiency. Assume that g is Baire class one and let $g(\mathbb{R}) = \{r_1, r_2, \ldots\}$. Since $g(\mathbb{R})$ is discrete then for every *i* we can find an open interval U_{r_i} of r_i such that $U_{r_i} \cap g(\mathbb{R}) = \{r_i\}$. It follows that for each *i*, $F_i = g^{-1}\{r_i\} = g^{-1}(U_{r_i})$ is an F_{σ} set. Furthermore, $\mathbb{R} = \bigcup_{i=1}^{+\infty} F_i, \ F_i \cap F_j = \phi \text{ for } i \neq j \text{ and } g|_{F_i} \text{ is continuous for each } i. \text{ By Corollary}$

2.4, g is k-continuous.

Remark 1: Theorem 3.1 is no longer true if the range of g is a non-discrete countable set. Let $\mathbb{Q} = \{r_n : n \in \mathbb{N}\}$ be the set of all rational numbers. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = r_n; \\ 0 & \text{otherwise.} \end{cases}$$

Notice that f is Baire class one and the range of f is the set $\{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Furthermore, the range of f is countable but not discrete since 0 is a limit point of the set $\{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. One can show that f is not k-continuous.

Observe that χ_A is Baire class one if and only if A is of type $G_{\delta} \cap F_{\sigma}$. So we have

Corollary 3.2. The characteristic function χ_A of a set A is k-continuous if and only if A is of type $G_{\delta} \cap F_{\sigma}$.

The next lemma is used in the proof of Theorem 3.4.

Lemma 3.3. The sum(product) of two k-continuous functions is k-continuous.

Proof: We will do the proof for the sum. The proof for the product is similar. Let *f* and *g* be *k*-continuous functions. By Theorem 2.7 and Theorem 2.5 *f* and *g* are piecewise continuous. By definition there exist increasing sequences of closed sets $\{E_i\}$ and $\{F_i\}$ for *f* and *g*, respectively such that $\mathbb{R} = \bigcup_{i=1}^{+\infty} E_i = \bigcup_{i=1}^{+\infty} F_i$ and $f|_{E_i}$ and $g|_{F_i}$ are continuous for each *i*. By Lemma 1 of [4], we can find disjoint sequences of F_{σ} sets $\{H_i\}$ and $\{J_i\}$ such that $\mathbb{R} = \bigcup_{i=1}^{+\infty} H_i = \bigcup_{i=1}^{+\infty} J_i$, $J_i \cap J_j = \emptyset$, $H_i \cap H_j = \emptyset$ for $i \neq j$ and $H_i \subseteq E_i$ and $J_i \subseteq F_i$ for all *i*. Now, $\mathbb{R} = \bigcup \{H_i \cap J_k : i, k \in \mathbb{N}\}$, different $H_i \cap J_k$ are disjoint and $(f+g)|_{H_i \cap J_k}$ is continuous for any *i*, *k*. Applying Corollary 2.4, we conclude that f + g is *k*-continuous.

Theorem 3.4. If f and g have different values at only a discrete set of points then f is k-continuous if and only if g is k-continuous.

Proof: Suppose $A = \{x : f(x) \neq g(x)\}$ is discrete and let f be a k-continuous function. Let h(x) = g(x) - f(x). First, we need to show that h is k-continuous. Let $A = \{x_1, x_2, \ldots, x_n, \ldots\}$. Since A is discrete then A is of type $G_{\delta} \cap F_{\sigma}$. It will also follow that $G = \mathbb{R} - A$ is of type F_{σ} . Furthermore, $h|_{\{x_i\}}$ is continuous for each i and $h|_G$ is continuous as well. Since $\mathbb{R} = G \cup \{x_1\} \cup \{x_2\} \cup \cdots \cup \{x_n\} \cup \cdots$ then by Corollary 2.4, h is k-continuous. Since the sum of two k-continuous functions is again a k-continuous function and g(x) = f(x) + h(x) then g is k-continuous. The other direction can be proved similarly. \Box

Remark 2: Again, Theorem 3.4 can no longer be improved in the sense that f and g cannot have different values on a non-discrete countable set. Consider the Cantor set K. Let $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = \begin{cases} 1, & x \in K; \\ 0, & \text{otherwise} \end{cases}$$

and $g: \mathbb{R} \to \mathbb{R}$ such that

 $g(x) = \begin{cases} 1, & \text{if } x \text{ is a two-sided limit point of } K; \\ 0, & \text{otherwise.} \end{cases}$

Since K is closed then K is of type $G_{\delta} \cap F_{\sigma}$. By Corollary 3.2, f is k-continuous. On the other hand, we can show that $g|_{K}$ has no points of continuity on K and hence g is not Baire class one. Observe further that f and g agree except on a countable set. Clearly, this set is not discrete. All these show that we cannot replace the condition of discreteness in Theorem 3.4 by countability.

Theorem 3.5. Every function g with a discrete set of discontinuities on \mathbb{R} is k-continuous.

Proof: Let $D_g = \{r_1, r_2, \cdots, r_n, \cdots\}$ be the set of points of discontinuity of g. Since D_g is of type $G_\delta \cap F_\sigma$ then $\mathbb{R} - D_g$ is F_σ . Now, $g|_{\{r_i\}}$ is continuous for each $i, g|_{\mathbb{R} - D_g}$ is continuous on $\mathbb{R} - D_g$ and $\mathbb{R} = (\mathbb{R} - D_g) \cup D_g$. By Corollary 2.4, g is k-continuous on \mathbb{R} .

Remark 3: The above theorem is false if the set of discontinuities of g is a nondiscrete countable set. Here's a counterexample. Let $\mathbb{Q} = \{r_n : n \in \mathbb{N}\}$ be the set of all rational numbers. Define $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = \begin{cases} \frac{1}{n+1} & \text{if } x = r_n; \\ 0 & \text{otherwise.} \end{cases}$$

It is well-known that f is discontinuous on the set of rational numbers \mathbb{Q} but continuous on the set of irrational numbers. Hence, f is Baire class one. Consider another function $q: \mathbb{R} \to \mathbb{R}$ such that

$$g(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n}, \quad n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Again, g is Baire class one. However,

$$(g \circ f)(x) = \begin{cases} 1 & \text{if } x = r_n; \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, $g \circ f$ is the well-known Dirichlet function which is not a Baire class one function. Hence, all these show that f with countable discontinuity \mathbb{Q} fails to be a right B_1 compositor and hence not a k-continuous function.

Remark 4: The converse of Theorem 3.5 is not true. Let K be the Cantor set. Consider the characteristic function χ_K . We have already shown above that χ_K is k-continuous. One can show that χ_K is discontinuous on K and continuous on $\mathbb{R} - K$. Therefore, we have exhibited a k-continuous function which has a nondiscrete set of discontinuity. It was shown in [4, Example 2] that the class of k-continuous functions is not closed under uniform limit. However, in that example, the sequence of k-continuous functions converges to a Baire class one function. Theorem 3.6 characterizes Baire class one functions in terms of k-continuous functions.

Theorem 3.6. Let $g : [0,1] \to \mathbb{R}$. Then g is Baire class one if and only if there exists a sequence of k-continuous functions on [0,1] that converges uniformly to g.

Proof: The sufficiency follows from the facts that the uniform limit of a sequence of Baire class one functions is Baire class one and that every k-continuous function is Baire class one. Now we prove the necessity. Suppose g is Baire class one. By [3, Proposition 2], for each n there is a Baire class one g_n such that $|g - g_n| < \frac{1}{n}$ and $g_n([0,1])$ is discrete. Obviously $\{g_n\}$ converges uniformly to g. Also each g_n is k-continuous by Theorem 3.1.

It is also natural to ask how a left B_1 compositor is characterized. This is another open problem. It was stated in [4, page 550] that a function with a finite set of discontinuity points is a left B_1 compositor. The following counterexample shows that this is not true.

Example: Let $q_1, q_2, \dots, q_n, \dots$ be an enumeration of the set \mathbb{Q} of rational numbers. Define $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = \begin{cases} \frac{1}{k}, & x = q_k; \\ 0, & \text{otherwise.} \end{cases}$$
$$g(x) = \begin{cases} x+1, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

and let

The function
$$f$$
 is well-known to be continuous at the set of irrational numbers and discontinuous at the set of rational numbers. Hence, f is a Baire class one function. We will show that $g \circ f$ is not Baire class one so that g is not a left B_1 compositor. Now,

$$(g \circ f)(x) = \begin{cases} 1 + \frac{1}{k}, & x = q_k; \\ 0, & \text{otherwise.} \end{cases}$$

It is then easy to show that $g \circ f$ is discontinuous everywhere and so it is not Baire class one. Therefore g, which has a single discontinuity at x = 0, is not a left B_1 compositor.

The counterexample above suggests that a left B_1 compositor must have a very nice property. It is conjectured that the only left B_1 compositors are the continuous functions.

Acknowledgment The first author wishes to thank the Department of Science and Technology through Philippine Council For Industry, Energy and Emerging Technology Research and Development(PCIEERD)for the financial support while this research was ongoing.

References

- P.Y. Lee, W.K. Tang and D. Zhao, "An Equivalent definition of Functions of the first Baire class", Proc. Amer. Math. Soc., 129:8(2001), 2273-2275.
- [2] L.M. Ros and B. Semmes, "A New Proof Of A Theorem of Jayne and Rogers", Real Anal. Exchange, 35:1(2009/2010), 195-204.
- [3] F.P. Wisniowski, "Separation by Ambivalent Sets", Real Anal. Exchange, 30:1(2004/2005), 289-294.
- [4] D. Zhao, "Functions Whose Composition With Baire Class One Functions Are Baire Class One", Soochow Journal of Mathematics, 33:4(2007), 543-551.