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Abstract. Associated to Birkhoff orthogonality, we study Birkhoff angles in a real

normed space and present some of their basic properties. We also discuss how to

decide whether an angle is more acute or more obtuse than another. In addition,

given two vectors x and y in a normed space, we study the formula for Birkhoff

‘cosine’ of the angle from x to y from which we can, in principal, compute the angle.

Some examples will be presented.
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1. INTRODUCTION

Let (X, ‖·‖) be a normed space, whereX is the real vector space. (Throughout
this note, X will be assumed so, unless otherwise stated.) Unlike in an inner product
space, there is not a standard definition of orthogonality, much less the definition of
angles, in X. In normed spaces, we know, for instance, the notion of Pythagorean
orthogonality (denoted by ⊥P ), which states that

x ⊥P y if and only if ‖x− y‖2 = ‖x‖2 + ‖y‖2,

and the notion of isosceles orthogonality (denoted by ⊥I), which states that

x ⊥I y if and only if ‖x+ y‖ = ‖x− y‖,

for x, y ∈ X, as introduced by R.C. James in [9]. Both of these definition coincides
with the usual definition of orthogonality when X is an inner product space and
the norm is induced by the inner product.

In 1935, G. Birkhoff [5] introduced a different notion of orthogonality in a
normed space, inspired by the property of the tangent to a circle in the Euclidean
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space (see Figure 1.1). A vector x ∈ X is said to be B-orthogonal to another vector
y ∈ X, denoted by x ⊥B y, if and only if

‖x+ λy‖ ≥ ‖x‖ (1.1)

for every λ ∈ R. This notion of orthogonality is then known as Birkhoff orthogo-
nality, as studied in [10]. One may observe that this definition also coincides with
the usual orthogonality when X is an inner product space and the norm is induced
by the inner product. However, unlike Pythagorean orthogonality and isosceles
orthogonality, Birkhoff orthogonality is not symmetric: x ⊥B y does not imply
y ⊥B x. For discussions on various notions of orthogonality in normed spaces, see
[1, 3, 13].

x2

x1

xy

x+ λy

Figure 1.1. A vector x is B-orthogonal to another vector y in (R2, ‖ · ‖2) (= R2 with
the Euclidean norm). The circle has radius ‖x‖2.

x2

x1

x

y x+ λy

Figure 1.2. A vector x is B-orthogonal to another vector y in (R2, ‖ · ‖∞) (= R2 with
the supremum norm). The square is the set of vectors with length ‖x‖∞. Note that here

the vector y is not B-orthogonal to x.

Once we define an orthogonality criterion in X, we may ask how we can
define angles in X that are compatible with the orthogonality defined there. If we
use Pythagorean orthogonality, then we can define the angle between two nonzero
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vectors x and y in X by

AP (x, y) := arccos
‖x‖2 + ‖y‖2 − ‖x− y‖2

2‖x‖‖y‖
.

If we adopt isosceles orthogonality, then we can define the angle between two
nonzero vectors x and y in X by

AI(x, y) := arccos
‖x+ y‖2 − ‖x− y‖2

4‖x‖‖y‖
.

(See [7] for some properties of Pythagorean angles and isosceles angles.) Now, if
we opt to define Birkhoff orthogonality in X, how should we define the angles from
a vector to another vector in X? To answer this question, we must dig deeper to
the case where X is an inner product space.

This paper presents some results that might be of interest to the readers,
especially undergraduate students who are interested in geometry of
normed spaces. Related results may be found in [3, 4, 6, 11, 12, 15]. One may
examine if the angles that we define are identical with the angles defined in [3,
p. 19] and [4, Eq. (2.2)]. Our approach, however, is different and is more accesible
to the readers who are new to the subject.

2. Preliminary Observation: Acute and Obtuse B-Angles

For the moment, let (X, 〈·, ·〉) be an inner product space, where X is a real
vector space, and ‖x‖ := 〈x, x〉1/2 be the induced norm on X. Let x ∈ X and
y ∈ X \ {0}. By simple calculations, one may observe that

• when 〈x, y〉 ≥ 0 (that is, x and y form an acute angle), the inequality (1.1)

holds for λ ≤ − 2〈x,y〉
‖y‖2 or λ ≥ 0.

• when 〈x, y〉 ≤ 0 (that is, x and y form an obstuse angle), the inequality

(1.1) holds for λ ≤ 0 or λ ≥ − 2〈x,y〉
‖y‖2 .

• when 〈x, y〉 = 0 (that is, x and y are orthogonal to each other), the in-
equality (1.1) holds for every λ ∈ R.

The sets of the values of λ that satisfies the inequality (1.1) are visualized in the
following figure:

−γ 0

0 γ

0

Figure 2.1. The sets of the values of λ for which the inequality (1.1) holds when (a)

〈x, y〉 ≥ 0, (b) 〈x, y〉 ≤ 0, and (c) 〈x, y〉 = 0, where γ := 2|〈x,y〉|
‖y‖2 .
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Note that when 〈x, y〉 6= 0 (that is, x and y form a proper acute or obtuse

angle), the value of γ := 2|〈x,y〉|
‖y‖2 is stricly positive. This means that, there exist

some values of λ for which the inequality (1.1) fails to hold.

We now go back to normed spaces in general. Based on the above observation,
we can define acute and obstuse angle in a normed space (X, ‖ · ‖) through the sets
of the values of λ satisfying the inequality (1.1). Let x, y ∈ X. We say that

• x forms an acute B-angle to y, denoted by xAB y, if the inequality (1.1)
holds for every λ ≥ 0.

• x forms an obtuse B-angle to y, denoted by xOB y, if the inequality (1.1)
holds for every λ ≤ 0.

• x is B-orthogonal to y, denoted by x ⊥B y, if x forms an acute B-angle
and an obstuse B-angle to y simultaneously.

As studied in [8, 14], we have the following propositions. We leave the proof
of the first proposition to the readers.

Proposition 2.1. Let x, y ∈ X \ {0} and a, b ∈ R \ {0}.
(1) Suppose that xAB y. If ab > 0 (that is, a and b have the same sign), then

axAB by. If ab < 0, then axOB by.
(2) Suppose that xOB y. If ab > 0, then axOB by. If ab < 0, then axAB by.

Proposition 2.2. Let x, y ∈ X. Then we have

(1) xAB y if and only if there exists δ > 0 such that the inequality (1.1) holds
for every λ ∈ [0, δ).

(2) xOB y if and only if there exists δ > 0 such that the inequality (1.1) holds
for every λ ∈ (−δ, 0].

(3) x ⊥B y if and only if there exists δ > 0 such that the inequality (1.1) holds
for every λ ∈ (−δ, δ) simultaneously.

Proof. We shall only prove the first statement, as the second one can be proven
in a similar way and the third one is a consequence of the first and the second ones.
Now, the ‘only if’ part is immediate, and so we only need to prove the ‘if’ part.
Suppose that there exists δ > 0 such that the inequality ‖x+ λy‖ ≥ ‖x‖ holds for
every λ ∈ [0, δ). If x or y equals 0, then the inequality obviously holds for every
λ ≥ 0. So assume that x, y 6= 0. Suppose that, to the contrary, there exists λ′ ≥ δ

such that ‖x+λ′y‖ < ‖x‖. Choose n ∈ N such that λ′

n ∈ (0, δ). By the hypothesis,

we have
∥∥∥x+ λ′

n y
∥∥∥ ≥ ‖x‖. But, by the triangle inequality, we find that∥∥∥∥x+

λ′

n
y

∥∥∥∥ =

∥∥∥∥n− 1

n
x+

1

n
(x+ λ′y)

∥∥∥∥
≤ n− 1

n
‖x‖+

1

n
‖x+ λ′y‖

<
n− 1

n
‖x‖+

1

n
‖x‖

= ‖x‖.
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Thus we obtain a contradiction. Therefore, we conclude that the inequality ‖x +
λy‖ ≥ ‖x‖ must hold for every λ ≥ 0. �

3. Proper Acute and Proper Obtuse B-Angles

If the real vector space X is equipped with an inner product 〈·, ·〉 and the
induced norm ‖x‖ := 〈x, x〉1/2, we find that two nonzero vectors x and y form a
proper acute angle if and only if there exists γ > 0 such that ‖x + λy‖ < ‖x‖
precisely for every λ ∈ (−γ, 0). Likewise, x and y form a proper obtuse angle if and
only if there exists γ > 0 such that ‖x + λy‖ < ‖x‖ precisely for every λ ∈ (0, γ).

The value of γ in both cases is given by γ := 2|〈x,y〉|
‖y‖2 . Our aim now is to formulate

the criteria for proper acute and proper obtuse B-angles in a normed space (X, ‖·‖).
Let x, y ∈ X. We define that

• x forms a proper acute B-angle to y, denoted by xPAB y, if xAB y but
x 6⊥B y.

• x forms a proper obtuse B-angle to y, denoted by xPOB y, if xOB y
but x 6⊥B y.

Note that, given x, y ∈ X, we now have three exclusive possibilities: xPAB y,
xPOB y, or x ⊥B y.

As in inner product spaces, we obtain analogous results in normed spaces, as
stated in the following theorem.

Theorem 3.1. Let x, y ∈ X. Then there are only three (exclusive) possibilities for
the set of values of λ for which the inequality (1.1) holds (or fails to hold), namely:

(1) There exists γ > 0 such that the inequality (1.1) fails to hold precisely for
every λ ∈ (−γ, 0).

(2) There exists γ > 0 such that the inequality (1.1) fails to hold precisely for
every λ ∈ (0, γ).

(3) The inequality (1.1) holds for every λ ∈ R.

To prove the theorem, we consider the following set

S(x, y) := {λ ∈ R : ‖x+ λy‖ < ‖x‖},

for x, y ∈ X. The above theorem is a consequence of the following statements.

Theorem 3.2. Let x, y ∈ X. Then each of the following statements hold:

(1) 0 /∈ S(x, y).
(2) If there exists λ > 0 such that λ ∈ S(x, y), then (0, λ] ⊆ S(x, y) and

µ /∈ S(x, y) for every µ ≤ 0.
(3) If there exists λ < 0 such that λ ∈ S(x, y), then [λ, 0) ⊆ S(x, y) and

µ /∈ S(x, y) for every µ ≥ 0.
(4) S(x, y) is bounded.
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(5) If S(x, y) 6= ∅, then 0 = inf S(x, y) < supS(x, y) or inf S(x, y) < supS(x, y) =
0.

(6) If S(x, y) 6= ∅, then inf S(x, y) /∈ S(x, y) and supS(x, y) /∈ S(x, y).

Proof.

(1) Obvious.
(2) Let λ > 0 and λ ∈ S(x, y). It follows from the first statement that 0 /∈

S(x, y). Now, for 0 < λ′ < λ, we observe that

||x+ λ′y|| =
∥∥∥∥λ− λ′λ

x+
λ′

λ
x+ λ′y

∥∥∥∥
≤ λ− λ′

λ
‖x‖+

λ′

λ
‖x+ λy‖

<
λ− λ′

λ
‖x‖+

λ′

λ
‖x‖

= ‖x‖,

whence λ′ ∈ S(x, y). This proves that (0, λ] ⊆ S(x, y). Next, suppose that
there exists µ < 0 such that µ ∈ S(x, y). Notice that for t0 = −µ

λ−µ ∈ (0, 1),

we have

0 = (1− t0)µ+ t0λ.

Hence

‖x‖ = ‖x+ [(1− t0)µ+ t0λ]y‖
≤ (1− t0)‖x+ µy‖+ t0‖x+ λy‖
< (1− t0)‖x‖+ t0‖x‖
= ‖x‖,

which cannot be true. Therefore we conclude that µ /∈ S(x, y) for every
µ ≤ 0.

(3) Similar to the proof of (2).
(4) Assuming that S(x, y) 6= ∅, let λ ∈ S(x, y). We observe that∣∣‖x‖ − |λ| ‖y‖∣∣ ≤ ‖x+ λy‖ < ‖x‖.

The assumption that S(x, y) 6= ∅ means that x, y 6= 0. Using the above
inequality, we obtain

0 < |λ| < 2‖x‖
‖y‖

.

Hence S(x, y) is bounded.
(5) It follows from (2), (3), and (4).
(6) Suppose that S(x, y) 6= ∅. Assume that there exists λ∗ > 0 such that

λ∗ ∈ S(x, y). By (2), (4), and (5), inf S(x, y) = 0 /∈ S(x, y) and supS(x, y)
exists. Let s := supS(x, y). Now the function f : R → R given by f(λ) =
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‖x+ λy‖ is continuous everywhere, with

f(λ) < ‖x‖ if λ ∈ (0, s), and

f(λ) ≥ ‖x‖ if λ ≤ 0 or λ > s.

Hence

‖x‖ ≤ lim
λ→s+

f(λ) = f(s) = lim
λ→s−

f(λ) ≤ ‖x‖.

Thus ‖x + sy‖ = f(s) = ‖x‖, which implies that supS(x, y) /∈ S(x, y).
By similar arguments, if there exists λ∗ < 0 such that λ∗ ∈ S(x, y), then
inf S(x, y) /∈ S(x, y). �

Remark 3.3. In view of Theorem 3.2, the value of γ in Theorem 3.1, part (1),
equals − inf S(x, y); while that in part (2) equals supS(x, y).

From Theorem 3.1, parts (1) and (2), we have the following corollary.

Corollary 3.4. Let x, y ∈ X. Then we have

(1) xPAB y if and only if there exists γ > 0 such that (1.1) fails to hold
precisely for every λ ∈ (−γ, 0).

(2) xPOB y if and only if there exists γ > 0 such that (1.1) fails to hold
precisely for every λ ∈ (0, γ).

As for acute and obtuse B-angles, we also have the following results for proper
acute and proper obtuse B-angles.

Proposition 3.5. Let x, y ∈ X \ {0} and a, b ∈ R \ {0}.
(1) Suppose that xPAB y. If ab > 0, then axPAB by. If ab < 0, then

axPOB by.
(2) Suppose that xPOB y. If ab > 0, then axPOB by. If ab < 0, then

axPAB by.

4. Comparing Two B-Angles

Let x, y ∈ X. Throughout this section, we shall consider the case where
xPAB y. (The discussion for the case where xPOBy is similar.) For the purpose
of our discussion here, we write γ(x, y) for the largest value of γ for which the
inequality (1.1) fails to hold precisely for every λ ∈ (−γ, 0).

Let x, y1, y2 ∈ X\{0}. If xPAB y1 and xOB y2 (which includes the possibility
that x ⊥B y2), then it is safe to say that the B-angle from x to y1 is more acute
than that from x to y2. The question now is: what can we say when xPAB y1 and
xPAB y2? How can we capture that one B-angle is more acute than the other?
Suppose that γ(x, y1) < γ(x, y2) (see the figure below).



On Birkhoff Angles in Normed Spaces 277

0−γ(x, y1)

0−γ(x, y2)

Figure 4.1. The blue rays indicated the sets of the values of λ for which

‖x+ λy1‖ ≥ ‖x‖ and ‖x+ λy2‖ ≥ ‖x‖ hold, respectively.

Intuitively, we might want to conclude that the B-angle from x to y2 is more
acute than that from x to y1 (that is, the larger the value of γ(x, y), the more acute
the B-angle from x to y). However, this conclusion is too early to make. Observe
the following example in (R2, ‖ · ‖∞).

Let x := (1, 0), yc := (c, c) ∈ (R2, ‖ · ‖∞), where c > 0. By observation, we
see that xPAB yc (see the figure below).

x2

x1

yc

x

x+ λyc

Figure 4.2. The vector x forms a proper acute B-angle to the vector y in (R2, ‖ · ‖∞).

Let us now take two different values of c, say c1 = 1 and c2 = 2, so that we
have y1 := (1, 1) and y2 := (2, 2). By simple calculation, we obtain γ(x, y1) = 1
and γ(x, y2) = 1

2 . Thus γ(x, y2) < γ(x, y1). However, we would not say that the
B-angle from x to y1 is more acute than that from x to y2 since y2 = 2y1. In such a
case, we would want to have the B-angle from x to y1 equal to that from x to y2.
To compare two proper B-acute angles, we need to find a number which in general
depends on the two vectors but invariant under positive scalar multiplications. In
order to do so, we go back to inner product spaces, to get an inspiration.

Suppose, for the moment, the real vector space X is equipped with an inner
product 〈·, ·〉 and its induced norm ‖x‖ := 〈x, x〉1/2. Let x, y ∈ X\{0}, and consider

the expression 〈x,y〉
‖x‖ ‖y‖ , which is set to be the cosine of the angle between x and y.

We note that the value of this expression, and so is the angle, is invariant under
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positive scalar multiplications. Indeed, if x′ := ax and y′ := by with a, b > 0, then

〈x′, y′〉
‖x′‖ ‖y′‖

=
〈ax, by〉
‖ax‖ ‖by‖

=
ab

ab

〈x, y〉
‖x‖ ‖y‖

=
〈x, y〉
‖x‖ ‖y‖

.

Thus, normalizing both vectors, we get

〈x̂, ŷ〉 =
〈x, y〉
‖x‖ ‖y‖

where x̂ := x
‖x‖ and ŷ := y

‖y‖ .

We turn back to our normed space (X, ‖ · ‖). Let x, y ∈ X \ {0}. Our goal is
to find a number γ∗ = γ∗(x, y) such that γ∗(ax, by) = γ∗(x, y) whenever a, b > 0.
The key is the lemma below.

Lemma 4.1. Let x, y ∈ X \ {0} and suppose that xPAB y. If a, b > 0, then
axPAB by and

γ(ax, by) =
a

b
γ(x, y).

Proof. Let a, b > 0. By Proposition 3.5, we have axPAB by. Now suppose that
λ ∈ (−γ(x, y), 0), where we have ‖x + λy‖ < ‖x‖. By simple manipulations, we
find that ∥∥∥ax+

a

b
λ(by)

∥∥∥ < ‖ax‖.
Thus a

bλ ∈ (−γ(ax, by), 0). Since we also have a
bλ ∈ (−ab γ(x, y), 0), we conclude

that γ(ax, by) ≥ a
b γ(x, y). On the other hand, since x = 1

a (ax) and y = 1
b (by), we

obtain γ(ax, by) ≤ a
b γ(x, y) via similar arguments. As a consequence, we arrive at

the conclusion that

γ(ax, by) =
a

b
γ(x, y),

as claimed. �

We are now ready to define the number γ∗ with the desired property. Let
x, y ∈ X such that xPAB y. Here of course x, y 6= 0, for otherwise x will be
B-orthogonal to y per definition. We then define

γ∗(x, y) :=
‖y‖
‖x‖

γ(x, y). (4.1)

Accordingly, we have the following lemma.

Lemma 4.2. Let x, y ∈ X \ {0} and suppose that xPAB y. If a, b > 0, then
γ∗(ax, by) = γ∗(x, y).

Proof. Let a, b > 0. By (4.1), we have

γ∗(ax, by) =
‖by‖
‖ax‖

γ(ax, by) =
b‖y‖
a‖x‖

a

b
γ(x, y) =

‖y‖
‖x‖

γ(x, y) = γ∗(x, y),

as desired. �
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Based on the above lemma, given x, y ∈ X such that xPAB y, we have
γ∗(x′, y′) = γ∗(x, y) for every x′ = ax and y′ = by with a, b > 0. Using this fact,
we can now consider the unit vectors x̂ := x

‖x‖ and ŷ := y
‖y‖ , where we have

γ∗(x, y) = γ∗(x̂, ŷ) = γ(x̂, ŷ).

This equality tells us that to compare acute B-angles, it suffices for us to compare
the values of γ(·, ·) among the associated unit vectors. The same is also true for
x, y ∈ X for which xPOB y. To be precise, we define the following.

Let x, y1, y2 ∈ X \ {0} such that xPAB y1 and xPAB y2. Let x̂, ŷ1, and ŷ2
be the unit vectors associated to x, y1, and y2, respectively. We say that

• the B-angle from x to y1 is more acute than that from x to y2 if γ(x̂, ŷ1) >
γ(x̂, ŷ2).

• the B-angle from x to y1 is the same as that from x to y2 if γ(x̂, ŷ1) =
γ(x̂, ŷ2).

• the B-angle from x to y1 is more obtuse than that from x to y2 if γ(x̂, ŷ1) <
γ(x̂, ŷ2).

(Note that similar definitions can be formulated for x, y1, y2 ∈ X \ {0} such that
xPOB y1 and xPOB y2.)

In the same spirit, we can also compare the B-angles for x1, x2, y ∈ X \ {0}
such that x1 PAB y and x2 PAB y. Here we say that

• the B-angle from x1 to y is more acute than that from x2 to y if γ(x̂1, ŷ) >
γ(x̂2, ŷ).

• the B-angle from x1 to y is the same as that from x2 to y if γ(x̂1, ŷ) =
γ(x̂2, ŷ).

• the B-angle from x1 to y is more obtuse than that from x2 to y if
γ(x̂1, ŷ) < γ(x̂2, ŷ).

(As in the previous case, similar definitions can be formulated for x1, x2, y ∈ X\{0}
such that x1 POB y and x2 POB y.)

Example 4.3. Let x := (1, 0), y := (y1, y2) ∈ (R2, ‖ · ‖∞). Firstly, let us consider
the case where y := (a, 1) with 0 < a < 1.

x2

x1
x = x̂

y = ŷ

Figure 4.3. The vectors x = (1, 0) and y = (a, 1) with 0 < a < 1 in (R2, ‖ · ‖∞).
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Note that x̂ = x and ŷ = y, and xPAB y. Indeed, there exists γ(x, y) > 0
such that ‖x+ λy‖∞ < ‖x‖∞ = 1 precisely for every λ ∈ (−γ(x, y), 0). To find the
value of γ(x, y), we solve the inequality

max{|1 + λa|, |λ|} = ‖x+ λy‖∞ < ‖x‖∞ = 1

for λ. We obtain that λ must satisfy −2/a < λ < 0 and −1 < λ < 0. Since
0 < a < 1, we have 1/a > 1, and so we find that λ ∈ (−1, 0). Therefore γ(x, y) = 1,
independent of the value of a ∈ (0, 1). In this case, the B-angle from x = (1, 0)
to y1 = (a1, 1) is the same as that from x = (1, 0) to y2 = (a2, 1) whenever
0 < a1, a2 < 1.

Secondly, let us consider the case where x := (1, 0), y := (1, a) with 0 < a ≤ 1.

x2

x1
x = x̂

y = ŷ

Figure 4.4. The vectors x = (1, 0) and y = (1, a) with 0 < a ≤ 1 in (R2, ‖ · ‖∞).

Note that ŷ = y and xPAB y. The value of γ(x, y) > 0 for which ‖x+λy‖∞ <
‖x‖∞ = 1 precisely for every λ ∈ (−γ(x, y), 0) can be found by solving the inequality

max{|1 + λ|, |aλ|} = ‖x+ λy‖∞ < ‖x‖∞ = 1

for λ. Here we obtain that −2 < λ < 0 and − 1
a < λ < 1

a , which yields λ ∈
(−min{2, 1a}, 0). For 0 < a ≤ 1

2 , we have 1
a ≥ 2, and so min{2, 1a} = 2. For

1
2 < a ≤ 1, we have 1 ≤ 1

a < 2, which gives min{2, 1a} = 1
a . Therefore γ(x, y) = 2

for a ∈ (0, 1/2] and γ(x, y) = 1
a for a ∈ ( 1

2 , 1]. In this example, the B-angle from
x = (1, 0) to y1 = (1, a1) is more acute than that from x = (1, 0) to y2 = (1, a2)
provided that 0 < a1 ≤ 1

2 < a2 ≤ 1.

Example 4.4. Let x := (1, 0), y = (a,
√

1− a2) ∈ (R2, ‖ · ‖2) with 0 < a < 1.
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x2

x1

y

x

x+ y

x+ λy

Figure 4.5. The vectors x = (1, 0) and y = (a,
√

1− a2) with 0 < a < 1 in (R2, ‖ · ‖2).

Observe that ‖x‖2 = ‖y‖2 = 1 and xPAB y. We can find the value of
γ(x, y) > 0 for which ‖x + λy‖2 < ‖x‖2 = 1 precisely for every λ ∈ (−γ(x, y), 0).
By simple computations, one may obtain that

γ(x, y) =
2〈x, y〉
‖y‖22

=
2a

a2 + (1− a2)
= 2a.

Thus here γ(x, y) gets larger as a tends to 1, that is, as y is approaching x.

5. Concluding Remarks: The Analog of the Cosine of B-Angles

We have defined acute and obtuse B-angles in a normed space (X, ‖ · ‖) via
the sets of values of λ for which the inequality (1.1) holds (or fails to hold), and
defined the criteria for proper acute and proper obtuse B-angles from a vector x to
another vector y in X. We have also defined a number γ∗(·, ·) which can be used to
compare the B-angle from x to y1 and that from x to y2, or from x1 to y and that
from x2 to y. It is then tempting to have a formula for the B-angle from a vector
to another vector in X, as in an inner product space.

As the readers might have guessed by now, the formula is only one step away
from the formula of γ(·, ·) on the unit sphere. Let x, y ∈ X \ {0}. Define

k(x, y) =


1
2γ(x̂, ŷ), if xPAB y;

0, if x ⊥B y;

− 1
2γ(x̂, ŷ), if xPOB y.

Notice that if X is an inner product space which is also equipped with the induced
norm, then k(x, y) = 〈x̂, ŷ〉, which is equal to the cosine of the angle between x
and y. We may thus view k(x, y) an analog of the cosine of an angle in the inner
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product space setting in the situation for B-angles in normed spaces. In this regard,
we will define the values k(x, y) as the cosine of the B-angle from x to y.

The following proposition gives basic properties of the values k(x, y) for x, y ∈
X \ {0}.

Proposition 5.1. Let x, y ∈ X \ {0} and a, b 6= 0. Then the following statements
hold:

(1) |k(x, y)| ≤ 1.
(2) If ab > 0, then k(ax, by) = k(x, y). If ab < 0, then k(ax, by) = −k(x, y).

Proof.

(1) Suppose that we have some values of λ satisfying ‖x̂+ λŷ‖ < 1. Then∣∣‖x̂‖ − |λ| ‖ŷ‖∣∣ ≤ ‖x̂+ λŷ‖ < 1.

Hence we have
∣∣1 − |λ|∣∣ < 1, whence 0 < |λ| < 2. This implies that

γ(x̂, ŷ) ≤ 2, and therefore |k(x, y)| = 1
2γ(x̂, ŷ) ≤ 1.

(2) We shall only prove it for the case where ab < 0 and xPAB y, and leave
the other cases to the readers. Without loss of generality, assume that
a > 0 > b. The hypothesis that xPAB y means that there exists γ(x̂, ŷ) > 0
such that ‖x̂+λŷ‖ < 1 precisely for every λ ∈ (−γ(x̂, ŷ), 0). Since a > 0 > b,

we have axPOB by, which means that there exists γ(âx, b̂y) > 0 such that

‖âx+ λb̂y‖ < 1 precisely for every λ ∈ (0, γ(âx, b̂y)). Now the assumption

that a > 0 > b implies that âx = x̂ and b̂y = −ŷ. For 0 < λ′ < γ(x̂, ŷ), set
λ = −λ′. Then −γ(x̂, ŷ) < λ < 0, and so we obtain

‖âx+ λ′(b̂y)‖ = ‖x̂+ λ′(−ŷ)‖ = ‖x̂+ λŷ‖ < 1.

This implies that γ(x̂, ŷ) ≤ γ(âx, b̂y). Conversely, by setting x′ = ax, y′ =

by, we have x = 1
ax
′, y = 1

by
′, so that γ(x̂, ŷ) ≥ γ(âx, b̂y). Therefore

γ(âx, b̂y) = γ(x̂, ŷ). Consequently, we obtain

k(x, y) =
1

2
γ(x̂, ŷ) =

1

2
γ(âx, b̂y) = −k(ax, by),

as expected. �

Both properties in the above proposition are basic properties of the cosine of
the B-angles in X. We miss, however, the symmetric property k(x, y) = k(y, x). To
see that we do not have this property, take for an example x := (1, 0) and y = (1, 1)
in (R2, ‖ · ‖∞). Here xPAB y and y ⊥B x, and thus k(x, y) > 0 = k(y, x). This
example tells us that, in general, k(x, y) 6= k(y, x). (This is why we do not use the
phrase the B-angle between x and y, but the B-angle from x to y.)

Furthermore, given a vector x ∈ X, the set of vectors y such that k(x, y) = 1
may consists more than just y = x. We have seen this in Example 4.3 where
(X, ‖ · ‖) = (R2, ‖ · ‖∞), x := (1, 0) and y := (1, a) with a ∈ [0, 1/2). The same also
happens with the set of vectors y such that k(x, y) = −1.
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Now define (R2, ‖ · ‖1) where ‖(x1, x2)‖1 := |x1| + |x2|. Similar to Example
4.3, we can also compute the values of k(x, y) for x := (1, 0) and y := (cos θ, sin θ) ∈
(R2, ‖ · ‖1) with θ ∈ (−π, π]. Here k can be seen as a function of θ, say k = f(θ),
where

f(θ) :=


1, −π4 < θ < π

4 ;

0, − 3π
4 ≤ θ ≤ −

π
4 or π

4 ≤ θ ≤
3π
4 ;

−1, −π < θ < − 3π
4 or 3π

4 < θ ≤ π.

The graph of k = f(θ) is presented below:

f(θ)

θ−π − 3π
4

−π4
π
4

3π
4

π

Figure 5.1. The graph of k as a function of θ for θ ∈ (−π, π].
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[3] Balestro, V., Horváth, A.G., Martini, H., and Teixeira, R., Angles in normed spaces, Aequat.

Math. 91(2) (2017), 201–236.
[4] Balestro, V. and Shonoda, E., On a cosine function defined for smooth normed spaces, J.

Convex Anal. 25 (2018), 21–39.

[5] Birkhoff, G., Orthogonality in linear metric spaces, Duke Math. J. 1(2) (1935), 169–172.
[6] Fankhänel, A., On angular measures in Minkowski planes, Beitr. Algebra Geom. 52 (2011),

335–342.
[7] Gunawan, H., Lindiarni, J., and Neswan, O., P−, I−, g−, and D− angles in normed spaces,

ITB J. Sci. 40A(1) (2008), 24–32.

[8] Jamaludin, M., Sudut Birkhoff pada Ruang Bernorma (in Indonesian), Final Project Report,
Mathematics Undergraduate Program, Bandung Institute of Technology, 2021.

[9] James, R.C., Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291–302.
[10] James, R.C., Orthogonality and linear functionals in normed linear spaces, Trans. Amer.

Math. Soc. 61 (1947), 265–292.



284 H. GUNAWAN, M. JAMALUDIN, AND M.D. PRATAMADIRDJA
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